Du Kang, Li Pei, Gao Kun, Wang Heng, Yang Zhiqiang, Zhang Wending, Xiao Fajun, Chua Soo Jin, Mei Ting
MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Science , Northwestern Polytechnical University , Xi'an 710129 , China.
Department of Electrical and Computer Engineering , National University of Singapore , 4 Engineering Drive 3 , 117583 Singapore.
J Phys Chem Lett. 2019 Aug 15;10(16):4699-4705. doi: 10.1021/acs.jpclett.9b01844. Epub 2019 Aug 6.
Plasmonic nanocavities enable extreme light-matter interaction by pushing light down to the nanoscale. The dipolar feature of bright modes allows coupling with the external excitation from free space but results in a radiating background, whereas nonradiating dark plasmon modes can hardly be excited. Here, we report for the first time on strong coupling between dark plasmon and anapole modes in a hybrid metal-dielectric nanostructure. With the aid of vanishing dipole characteristics of the anapole and dark plasmons, the hybrid modes exhibit minimum far-field scattering and maximum near-field enhancement. The dark mode coupling in the metal-dielectric nanostructure offers a nonradiating air cavity with greatly improved field enhancement in a broadened band, thus providing a background-free experimental platform for spectroscopic applications. The proposed approach to dark plasmon excitation, i.e., via anapole, may boost practical exploitation of dark plasmons by allowing linearly polarized light illumination and scalable arrays of individual nanostructure units.
等离子体纳米腔通过将光压缩到纳米尺度实现了极强的光与物质相互作用。亮模式的偶极特性允许与来自自由空间的外部激发耦合,但会产生辐射背景,而非辐射的暗等离子体模式则很难被激发。在此,我们首次报道了在混合金属-电介质纳米结构中暗等离子体与无偶极模式之间的强耦合。借助无偶极和暗等离子体的消失偶极特性,混合模式表现出最小的远场散射和最大的近场增强。金属-电介质纳米结构中的暗模式耦合提供了一个无辐射的空气腔,在宽带中具有大大改善的场增强,从而为光谱应用提供了一个无背景的实验平台。所提出的通过无偶极激发暗等离子体的方法,即通过无偶极激发,可通过允许线偏振光照射和单个纳米结构单元的可扩展阵列来推动暗等离子体的实际应用。