Suppr超能文献

介电-金属混合纳米结构中的强反极子-表面等离子体耦合

Strong anapole-plasmon coupling in dielectric-metallic hybrid nanostructures.

作者信息

Wang Jingyu, Wu Suze, Yang Weimin, Tian Xiaojun

机构信息

School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030000, China.

School of Electronic Information, Zhangzhou Institute of Technology, Zhangzhou 363000, China.

出版信息

Phys Chem Chem Phys. 2024 Sep 11;26(35):23429-23437. doi: 10.1039/d4cp03142c.

Abstract

The nanoscale ampification of light-matter interactions exhibits profound potential in multiple scientific fields, such as physics, chemistry, surface science, materials science, and nanophotonics. Nonetheless, achieving robust optical mode coupling within cavities faces significant hurdles due to modal dispersion and weak optical field confinement. In this theoretical investigation, we demonstrate the viability of strong coupling between the anapole mode of a slotted silicon nanodisk and the plasmonic modes of an Ag nanodisk dimer at visible light frequencies. By introducing anapole modes, we successfully confine light to subwavelength volumes, suppressing radiative losses and achieving a remarkable Rabi splitting of 468 meV. This substantial coupling is facilitated by the large spatial overlap of intense optical fields. Capitalizing on this strong mode coupling, we generate novel hybrid energy states with significant electromagnetic field enhancement. Our study serves as a valuable blueprint for designing platforms based on strong anapole mode coupling at visible frequencies and paves the way for deeper explorations into nanoscale light-matter interactions.

摘要

光与物质相互作用的纳米级放大在多个科学领域展现出巨大潜力,如物理学、化学、表面科学、材料科学和纳米光子学。然而,由于模式色散和弱光场限制,在腔内实现稳健的光学模式耦合面临重大障碍。在这项理论研究中,我们证明了在可见光频率下,开槽硅纳米盘的偶极子模式与银纳米盘二聚体的等离子体模式之间强耦合的可行性。通过引入偶极子模式,我们成功地将光限制在亚波长体积内,抑制了辐射损耗,并实现了468毫电子伏特的显著拉比分裂。这种强耦合得益于强光场的大空间重叠。利用这种强模式耦合,我们生成了具有显著电磁场增强的新型混合能态。我们的研究为设计基于可见光频率下强偶极子模式耦合的平台提供了有价值的蓝图,并为深入探索纳米级光与物质相互作用铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验