Suppr超能文献

基于时空评估的易受伤害道路使用者风险损伤的多项逻辑回归预测。

Multinomial logistic regression for prediction of vulnerable road users risk injuries based on spatial and temporal assessment.

机构信息

Department of Mechanical Engineering, Centre for Mechanical Technology and Automation, University of Aveiro, Aveiro, Portugal.

出版信息

Int J Inj Contr Saf Promot. 2019 Dec;26(4):379-390. doi: 10.1080/17457300.2019.1645185. Epub 2019 Jul 31.

Abstract

Urban area's rapid growth often leads to adverse effects such as traffic congestion and increasing accident risks due to the expansion in transportation systems. In the frame of smart cities, active modes are expected to be promoted to improve living conditions. To achieve this goal, it is necessary to reduce the number of vulnerable road users (VRUs) injuries. Considering injury severity levels from crashes involving VRUs, this article seeks spatial and temporal patterns between cities and presents a model to predict the likelihood of VRUs to be involved in a crash. Kernel Density Estimation was applied to identify blackspots based on injury severity levels. A Multinomial Logistic Regression model was developed to identify statistically significant variables to predict the occurrence of these crashes. Results show that target spatial and temporal variables influence the number and severity of crashes involving VRUs. This approach can help to enhance road safety policies.

摘要

城市地区的快速增长通常会导致交通拥堵等不利影响,并由于交通系统的扩展而增加事故风险。在智慧城市的框架内,预计将推广积极模式以改善生活条件。为了实现这一目标,有必要减少弱势道路使用者(VRU)的受伤人数。考虑到涉及 VRU 的事故的伤害严重程度,本文寻求城市之间的时空模式,并提出了一个预测 VRU 发生事故可能性的模型。核密度估计被应用于基于伤害严重程度来识别事故黑点。建立了多项逻辑回归模型,以确定具有统计学意义的变量来预测这些事故的发生。结果表明,目标时空变量会影响涉及 VRU 的事故数量和严重程度。这种方法可以帮助加强道路安全政策。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验