The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile , Zhejiang Sci-Tech University , Xiasha Higher Education Park Avenue 2 No. 928 , Hangzhou 310018 , China.
Department of Chemical Engineering, Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo , Ontario N2L 3G1 , Canada.
J Agric Food Chem. 2019 Oct 2;67(39):10954-10967. doi: 10.1021/acs.jafc.9b03110. Epub 2019 Aug 13.
High-performance and useful graphene oxide (GO) and cellulose nanocrystals (CNCs) are easily extracted from natural graphite and cellulose raw materials, and poly(3-hydroxybutyrate--3-hydroxyvalerate) (PHBV) is produced by bacterial fermentation from natural plant corn stalks, etc. In this study, novel ternary nanocomposites consisting of PHBV/cellulose nanocrystal-graphene oxide nanohybrids were prepared via a simple solution casting method. The synergistic effect of CNC with GO nanohybrids obtained by chemical grafting (CNC-GO, covalent bonds) and physical blending (CNC/GO, noncovalent bonds) on the physicochemical properties of PHBV nanocomposites was evaluated and the results compared with a single component nanofiller (CNC or GO) in binary nanocomposites. More interestingly, ternary nanocomposites displayed the highest thermal stability and mechanical properties. Compared to neat PHBV, the tensile strength and elongation to break increased by 170.2 and 52.1%, respectively, and maximum degradation temperature () increment by 26.3 °C, were observed for the ternary nanocomposite with 1 wt % covalent bonded CNC-GO. Compared to neat PHBV, binary, and 1:0.5 wt % noncovalent CNC/GO based nanocomposites, the ternary nanocomposites with 1 wt % covalent bonded CNC-GO exhibited excellent barrier properties, good antibacterial activity (antibacterial ratio of 100.0%), reduced barrier properties, and lower migration level for both food simulants. Such a synergistic effect yielded high-performance ternary nanocomposites with great potential for bioactive food packaging materials.
从天然石墨和纤维素原料中容易提取出高性能且有用的氧化石墨烯(GO)和纤维素纳米晶体(CNCs),并且聚(3-羟基丁酸酯-3-羟基戊酸酯)(PHBV)是由细菌从天然植物玉米秸秆等发酵生产的。在这项研究中,通过简单的溶液浇铸法制备了由 PHBV/纤维素纳米晶体-氧化石墨烯纳米杂化物组成的新型三元纳米复合材料。通过化学接枝(CNC-GO,共价键)和物理共混(CNC/GO,非共价键)获得的 CNC 与 GO 纳米杂化物的协同作用对 PHBV 纳米复合材料的物理化学性质进行了评估,并将结果与二元纳米复合材料中的单一成分纳米填料(CNC 或 GO)进行了比较。更有趣的是,三元纳米复合材料表现出最高的热稳定性和力学性能。与纯 PHBV 相比,拉伸强度和断裂伸长率分别提高了 170.2%和 52.1%,最大降解温度()提高了 26.3°C,在含有 1wt%共价键合 CNC-GO 的三元纳米复合材料中观察到。与纯 PHBV、二元和 1:0.5wt%非共价 CNC/GO 基纳米复合材料相比,含有 1wt%共价键合 CNC-GO 的三元纳米复合材料表现出优异的阻隔性能、良好的抗菌活性(抗菌率为 100.0%)、较低的阻隔性能和两种食品模拟物的迁移水平较低。这种协同作用产生了具有高阻隔性能的高性能三元纳米复合材料,在生物活性食品包装材料方面具有巨大的潜力。