Israel Oceanographic & Limnological Research, Haifa, Israel.
Department of Isotope Geology, Georg-August-University of Göttingen, Göttingen, Gemany.
PLoS One. 2019 Jul 31;14(7):e0220390. doi: 10.1371/journal.pone.0220390. eCollection 2019.
Here we explore the carbon and oxygen isotope compositions of the co-existing carbonate and phosphate fractions of fish tooth enameloid as a tool to reconstruct past aquatic fish environments and harvesting grounds. The enameloid oxygen isotope compositions of the phosphate fraction (δ18OPO4) vary by as much as ~4‰ for migratory marine fish such as gilthead seabream (Sparus aurata), predominantly reflecting the different saline habitats it occupies during its life cycle. The offset in enameloid Δ18OCO3-PO4 values of modern marine Sparidae and freshwater Cyprinidae from the Southeast Mediterranean region vary between 8.1 and 11.0‰, similar to values reported for modern sharks. The mean δ13C of modern adult S. aurata and Cyprinus carpio teeth of 0.1±0.4‰ and -6.1±0.7‰, respectively, mainly reflect the difference in δ13C of dissolved inorganic carbon (DIC) of the ambient water and dietary carbon sources. The enameloid Δ18OCO3-PO4 and δ13C values of ancient S. aurata (Holocene) and fossil Luciobarbus sp. (Cyprinidae; mid Pleistocene) teeth agree well with those of modern specimens, implying little diagenetic alteration of these tooth samples. Paired δ18OPO4-δ13C data from ancient S. aurata teeth indicate that hypersaline water bodies formed in the Levant region during the Late Holocene from typical Mediterranean coastal water with high evaporation rates and limited carbon input from terrestrial sources. Sparid tooth stable isotopes further suggest that coastal lagoons in the Eastern Mediterranean had already formed by the Early Holocene and were influenced by terrestrial carbon sources. Overall, combined enameloid oxygen and carbon isotope analysis of fish teeth is a powerful tool to infer the hydrologic evolution of aquatic environments and assess past fishing grounds of human populations in antiquity.
在这里,我们探索了鱼牙釉质中碳酸盐和磷酸盐共存部分的碳氧同位素组成,以此作为重建过去水生鱼类环境和捕捞地的工具。像金头鲷(Sparus aurata)这样的洄游性海洋鱼类,其牙釉质磷酸盐部分的氧同位素组成(δ18OPO4)变化幅度可达~4‰,主要反映了其生命周期中所处的不同咸水环境。来自东南地中海地区的现代海洋 Sparidae 和淡水 Cyprinidae 牙釉质 Δ18OCO3-PO4 值的偏移量在 8.1 到 11.0‰之间,与现代鲨鱼的报告值相似。现代成年金头鲷和鲤鱼牙齿的平均 δ13C 值分别为 0.1±0.4‰和-6.1±0.7‰,主要反映了环境水中溶解无机碳(DIC)和饮食碳源的 δ13C 差异。古代金头鲷(全新世)和化石 Luciobarbus sp.(鲤科;中更新世)牙齿的牙釉质 Δ18OCO3-PO4 和 δ13C 值与现代标本非常吻合,表明这些牙齿样本的成岩作用变化很小。来自古代金头鲷牙齿的成对 δ18OPO4-δ13C 数据表明,在全新世晚期,由于蒸发率高且陆地来源的碳输入有限,黎凡特地区形成了高盐水体。 Sparid 牙齿稳定同位素进一步表明,东地中海的沿海泻湖在全新世早期就已经形成,并受到陆地碳源的影响。总的来说,鱼类牙齿的牙釉质氧和碳同位素综合分析是推断水生环境水文演化和评估古代人类捕捞地的有力工具。