Suppr超能文献

心脏磁共振特征追踪技术定量评估 2 型糖尿病患者右心室变形。

Cardiac magnetic resonance feature tracking for quantifying right ventricular deformation in type 2 diabetes mellitus patients.

机构信息

Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan, 610041, China.

Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.

出版信息

Sci Rep. 2019 Jul 31;9(1):11148. doi: 10.1038/s41598-019-46755-y.

Abstract

To determine the feasibility of deformation analysis in the right ventricle (RV) using cardiovascular magnetic resonance myocardial feature tracking (CMR-FT) in type 2 diabetes mellitus (T2DM) patients. We enrolled 104 T2DM patients, including 14 with impaired right ventricular ejection fraction (RVEF) and 90 with preserved RVEF, and 26 healthy controls in this prospective study. CMR was used to determine RV feature-tracking parameters. RV strain parameters were compared among the controls, patients with preserved and reduced RVEF. Binary logistic regression was used to predict RV dysfunction. Receiver operating characteristic analysis was used to assess the diagnostic accuracy. The agreement was tested by Bland-Altman analysis. Compared with controls, longitudinal and circumferential global peak strain (PS) and PS at mid-ventricular, apical slices were significantly decreased in T2DM patients with or without reduced RVEF (p < 0.05). Within the T2DM patients, the global longitudinal PS (GLPS) and the longitudinal PS at mid-ventricular segments were significantly reduced in the reduced RVEF group than in preserved RVEF groups (p < 0.05). GLPS was an independent predictor of RV dysfunction (odds ratio: 1.246, 95% CI: 1.037-1.496; p = 0.019). The GLPS demonstrated greater diagnostic accuracy (area under curve: 0.716) to predict RV dysfunction. On Bland-Altman analysis, global circumferential PS and GLPS had the best intra- and inter-observer agreement, respectively. In T2DM patients, CMR-FT could quantify RV deformation and identify subclinical RV dysfunction in those with normal RVEF. Further, RV strain parameters are potential predictors for RV dysfunction in T2DM patients.

摘要

目的

探讨 2 型糖尿病(T2DM)患者心脏磁共振心肌斑点追踪技术(CMR-FT)评估右心室(RV)变形的可行性。

方法

前瞻性纳入 T2DM 患者 104 例,根据右室射血分数(RVEF)分为射血分数保留组(RVEF≥50%,n=90)、射血分数降低组(RVEF<50%,n=14),另选 26 例健康志愿者为对照组。行 CMR 检查,获取 RV 应变参数。比较各组间 RV 应变参数,采用二元 logistic 回归分析预测 RV 功能障碍,绘制受试者工作特征(ROC)曲线评估诊断效能,以 Bland-Altman 分析评估一致性。

结果

与对照组比较,T2DM 患者无论 RVEF 是否降低,其纵向和环向整体峰值应变(PS)及中、心尖段 PS 均显著降低(P<0.05);在 T2DM 患者中,射血分数降低组的 GLPS 及中、心尖段纵向 PS 较射血分数保留组明显降低(P<0.05)。GLPS 是 RV 功能障碍的独立预测因子(OR:1.246,95%CI:1.037~1.496,P=0.019),其预测 RV 功能障碍的曲线下面积(AUC)为 0.716。Bland-Altman 分析显示,整体环向 PS 和 GLPS 具有最佳的观察者内和观察者间一致性。在 T2DM 患者中,CMR-FT 可定量 RV 变形,且可发现 RVEF 正常患者的亚临床 RV 功能障碍,RV 应变参数可能是 T2DM 患者 RV 功能障碍的潜在预测因子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/634e/6668453/03adce06e297/41598_2019_46755_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验