Suppr超能文献

城市医疗系统对用药错误的探索性研究。

An urban medical system's exploratory study of medication errors.

作者信息

Morelock Skip G, Kirk Jeffrey D

机构信息

Collin College School of Nursing McKinney Texas.

Independent statistician.

出版信息

Nurs Open. 2019 Jun 17;6(3):1197-1204. doi: 10.1002/nop2.319. eCollection 2019 Jul.

Abstract

AIMS

This study sought to identify patterns of medication errors with respect to shifts, day of week, unit involved, severity, medication class and cause of errors and to propose possible solutions.

DESIGN

This was a retrospective explorative study using a database containing 605 medication events from two medical centres. Variables assessed include medication type, the error severity, and time the medication was ordered, the unit that the error occurred on and the day of the week of the errors.

METHODS

Simple percentages were used to report the results, and point-biserial correlation was employed to test for significant differences between the day and night shifts.

RESULTS

There were no statistically significant findings when comparing event severity against the a.m. or p.m. shifts. The medication classes with the most errors were antibiotics, and the most common reason cited for errors was dose omission. The most commonly reported severity level was a 2 which requires increased patient monitoring.

摘要

目的

本研究旨在确定与班次、一周中的日期、涉及的科室、严重程度、药物类别及错误原因相关的用药错误模式,并提出可能的解决方案。

设计

这是一项回顾性探索性研究,使用了一个包含来自两个医疗中心的605起用药事件的数据库。评估的变量包括药物类型、错误严重程度、用药医嘱时间、错误发生的科室以及错误发生的星期几。

方法

使用简单百分比报告结果,并采用点二列相关分析来检验日班和夜班之间的显著差异。

结果

将事件严重程度与上午或下午班次进行比较时,未发现具有统计学意义的结果。错误最多的药物类别是抗生素,最常见的错误原因是漏服剂量。最常报告的严重程度级别为2级,这需要加强对患者的监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/066c/6650646/2b6e632cf858/NOP2-6-1197-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验