Alzaatreh Ayman
Department of Mathematics and Statistics, American University of Sharjah, Sharjah, United Arab Emirates.
MethodsX. 2019 Mar 22;6:938-952. doi: 10.1016/j.mex.2019.02.025. eCollection 2019.
A few generalizations of the Cauchy distribution appear in the literature. In this paper, a new generalization of the Cauchy distribution is proposed, namely, the exponentiated-exponential Cauchy distribution (EECD). Unlike the Cauchy distribution, EECD can have moments for some restricted parameters space. The distribution has wide range of skewness and kurtosis values and has a closed form cumulative distribution function. It can be left skewed, right skewed and symmetric. Two different estimation methods for the EECD parameters are studied. •A new generalization of the Cauchy distribution is proposed, namely, exponentiated-exponential Cauchy distribution (EECD).•EECD has flexible shape characteristics. Moreover, EECD moments are defined under some restrictions on the parameter space.
文献中出现了一些柯西分布的推广形式。本文提出了一种新的柯西分布推广形式,即指数 - 指数柯西分布(EECD)。与柯西分布不同,EECD在某些受限参数空间下可以有矩。该分布具有广泛的偏度和峰度值,并且具有封闭形式的累积分布函数。它可以是左偏、右偏和对称的。研究了EECD参数的两种不同估计方法。
提出了一种新的柯西分布推广形式,即指数 - 指数柯西分布(EECD)。
EECD具有灵活的形状特征。此外,EECD的矩是在参数空间的某些限制下定义的。