Suppr超能文献

对比增强磁共振图像上皮质骨血管的识别与定量分析

Cortical bone vessel identification and quantification on contrast-enhanced MR images.

作者信息

Wu Po-Hung, Gibbons Matthew, Foreman Sarah C, Carballido-Gamio Julio, Han Misung, Krug Roland, Liu Jing, Link Thomas M, Kazakia Galateia J

机构信息

Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.

Department of Radiology, University of Colorado Denver, Denver, CO, USA.

出版信息

Quant Imaging Med Surg. 2019 Jun;9(6):928-941. doi: 10.21037/qims.2019.05.23.

Abstract

BACKGROUND

Cortical bone porosity is a major determinant of bone strength. Despite the biomechanical importance of cortical bone porosity, the biological drivers of cortical porosity are unknown. The content of cortical pore space can indicate pore expansion mechanisms; both of the primary components of pore space, vessels and adipocytes, have been implicated in pore expansion. Dynamic contrast-enhanced MRI (DCE-MRI) is widely used in vessel detection in cardiovascular studies, but has not been applied to visualize vessels within cortical bone. In this study, we have developed a multimodal DCE-MRI and high resolution peripheral QCT (HR-pQCT) acquisition and image processing pipeline to detect vessel-filled cortical bone pores.

METHODS

For this human study, 19 volunteers (10 males and 9 females; mean age =63±5) were recruited. Both distal and ultra-distal regions of the non-dominant tibia were imaged by HR-pQCT (82 µm nominal resolution) for bone structure segmentation and by 3T DCE-MRI (Gadavist; 9 min scan time; temporal resolution =30 sec; voxel size 230×230×500 µm) for vessel visualization. The DCE-MRI was registered to the HR-pQCT volume and the voxels within the MRI cortical bone region were extracted. Features of the DCE data were calculated and voxels were categorized by a 2-stage hierarchical kmeans clustering algorithm to determine which voxels represent vessels. Vessel volume fraction (volume ratio of vessels to cortical bone), vessel density (average vessel count per cortical bone volume), and average vessel volume (mean volume of vessels) were calculated to quantify the status of vessel-filled pores in cortical bone. To examine spatial resolution and perform validation, a virtual phantom with 5 channel sizes and an applied pseudo enhancement curve was processed through the proposed image processing pipeline. Overlap volume ratio and Dice coefficient was calculated to measure the similarity between the detected vessel map and ground truth.

RESULTS

In the human study, mean vessel volume fraction was 2.2%±1.0%, mean vessel density was 0.68±0.27 vessel/mm, and mean average vessel volume was 0.032±0.012 mm/vessel. Signal intensity for detected vessel voxels increased during the scan, while signal for non-vessel voxels within pores did not enhance. In the validation phantom, channels with diameter 250 µm or greater were detected successfully, with volume ratio equal to 1 and Dice coefficient above 0.6. Both statistics decreased dramatically for channel sizes less than 250 µm.

CONCLUSIONS

We have a developed a multi-modal image acquisition and processing pipeline that successfully detects vessels within cortical bone pores. The performance of this technique degrades for vessel diameters below the in-plane spatial resolution of the DCE-MRI acquisition. This approach can be applied to investigate the biological systems associated with cortical pore expansion.

摘要

背景

皮质骨孔隙率是骨强度的主要决定因素。尽管皮质骨孔隙率具有生物力学重要性,但其皮质孔隙的生物学驱动因素尚不清楚。皮质孔隙空间的含量可指示孔隙扩张机制;孔隙空间的两个主要成分,血管和脂肪细胞,都与孔隙扩张有关。动态对比增强磁共振成像(DCE-MRI)在心血管研究中广泛用于血管检测,但尚未应用于可视化皮质骨内的血管。在本研究中,我们开发了一种多模态DCE-MRI和高分辨率外周定量CT(HR-pQCT)采集及图像处理流程,以检测充满血管的皮质骨孔隙。

方法

在这项人体研究中,招募了19名志愿者(10名男性和9名女性;平均年龄=63±5岁)。通过HR-pQCT(标称分辨率82μm)对非优势胫骨的远端和超远端区域进行成像,以进行骨结构分割,并通过3T DCE-MRI(钆塞酸二钠;扫描时间9分钟;时间分辨率=30秒;体素大小230×230×500μm)进行血管可视化。将DCE-MRI配准到HR-pQCT体积,并提取MRI皮质骨区域内的体素。计算DCE数据的特征,并通过两阶段分层k均值聚类算法对体素进行分类,以确定哪些体素代表血管。计算血管体积分数(血管与皮质骨的体积比)、血管密度(每皮质骨体积的平均血管计数)和平均血管体积(血管的平均体积),以量化皮质骨中充满血管的孔隙状态。为了检查空间分辨率并进行验证,通过所提出的图像处理流程处理具有5种通道大小和应用的伪增强曲线的虚拟模型。计算重叠体积比和骰子系数,以测量检测到的血管图与真实情况之间的相似性。

结果

在人体研究中,平均血管体积分数为2.2%±1.0%,平均血管密度为0.68±0.27个血管/mm,平均平均血管体积为0.032±0.012mm/血管。检测到的血管体素的信号强度在扫描过程中增加,而孔隙内非血管体素的信号没有增强。在验证模型中,直径250μm或更大的通道被成功检测到,体积比等于1,骰子系数高于0.6。对于小于250μm的通道大小,这两个统计量均显著下降。

结论

我们开发了一种多模态图像采集和处理流程,成功检测到了皮质骨孔隙内的血管。对于直径低于DCE-MRI采集的平面空间分辨率的血管,该技术的性能会下降。这种方法可用于研究与皮质孔隙扩张相关的生物系统。

相似文献

1
Cortical bone vessel identification and quantification on contrast-enhanced MR images.
Quant Imaging Med Surg. 2019 Jun;9(6):928-941. doi: 10.21037/qims.2019.05.23.
4
Multiscale and multimodality computed tomography for cortical bone analysis.
Phys Med Biol. 2016 Dec 21;61(24):8553-8576. doi: 10.1088/0031-9155/61/24/8553. Epub 2016 Nov 15.
5
Structural analysis of cortical porosity applied to HR-pQCT data.
Med Phys. 2014 Jan;41(1):013701. doi: 10.1118/1.4851575.
7
Tracking changes of individual cortical pores over 1 year via HR-pQCT in a small cohort of 60-year-old females.
Bone Rep. 2022 Nov 2;17:101633. doi: 10.1016/j.bonr.2022.101633. eCollection 2022 Dec.
8
In vivo evaluation of the presence of bone marrow in cortical porosity in postmenopausal osteopenic women.
Ann Biomed Eng. 2010 Feb;38(2):235-46. doi: 10.1007/s10439-009-9850-7. Epub 2009 Dec 2.
9
An in silico validation framework for quantitative DCE-MRI techniques based on a dynamic digital phantom.
Med Image Anal. 2021 Oct;73:102186. doi: 10.1016/j.media.2021.102186. Epub 2021 Jul 20.

引用本文的文献

1
Osteocyte mitochondria regulate angiogenesis of transcortical vessels.
Nat Commun. 2024 Mar 21;15(1):2529. doi: 10.1038/s41467-024-46095-0.
5
Augmenting Osteoporosis Imaging with Machine Learning.
Curr Osteoporos Rep. 2021 Dec;19(6):699-709. doi: 10.1007/s11914-021-00701-y.

本文引用的文献

1
Current imaging techniques in osteoporosis.
Clin Exp Rheumatol. 2018 Sep-Oct;36 Suppl 114(5):115-126. Epub 2018 Oct 1.
2
Cortical or Trabecular Bone: What's the Difference?
Am J Nephrol. 2018;47(6):373-375. doi: 10.1159/000489672. Epub 2018 May 22.
4
Diabetes and Deficits in Cortical Bone Density, Microarchitecture, and Bone Size: Framingham HR-pQCT Study.
J Bone Miner Res. 2018 Jan;33(1):54-62. doi: 10.1002/jbmr.3240. Epub 2017 Sep 20.
6
Bone structural changes after gastric bypass surgery evaluated by HR-pQCT: a two-year longitudinal study.
Eur J Endocrinol. 2017 Jun;176(6):685-693. doi: 10.1530/EJE-17-0014. Epub 2017 Mar 13.
7
Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis.
Ther Adv Musculoskelet Dis. 2016 Dec;8(6):225-235. doi: 10.1177/1759720X16670154. Epub 2016 Oct 5.
9
Quantitative imaging methods in osteoporosis.
Quant Imaging Med Surg. 2016 Dec;6(6):680-698. doi: 10.21037/qims.2016.12.13.
10
Cortical Bone Area Predicts Incident Fractures Independently of Areal Bone Mineral Density in Older Men.
J Clin Endocrinol Metab. 2017 Feb 1;102(2):516-524. doi: 10.1210/jc.2016-3177.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验