College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
Ningbo Graphene Innovation Center Co., Ltd, Ningbo, 315200, China.
Small. 2019 Sep;15(38):e1902032. doi: 10.1002/smll.201902032. Epub 2019 Aug 1.
Increasing awareness toward environmental remediation and renewable energy has led to a vigorous demand for exploring a win-win strategy to realize the eco-efficient conversion of pollutants ("trash") into energy-storage nanomaterials ("treasure"). Inspired by the biological metabolism of bacteria, Acidithiobacillus ferrooxidans (A. ferrooxidans) is successfully exploited as a promising eco-friendly sustainable biofactory for the controllable fabrication of α-Fe O nanorods via the oxidation of soluble ferrous irons to insoluble ferric substances (Jarosite, KFe (SO ) (OH) ) and a facile subsequent heat treatment. It is demonstrated that the stable solid electrolyte interphase layers and marvelous cracks in situ formed in biometabolic α-Fe O nanorods play important roles that not only significantly enhance the structure stability but also facilitate electron and ion transfer. Consequently, these biometabolic α-Fe O nanorods deliver a superior stable capacity of 673.9 mAh g at 100 mA g over 200 cycles and a remarkable multi-rate capability that observably prevails over the commercial counterpart. It is highly expected that such biological synthesis strategies can shed new light on an emerging field of research interconnecting biotechnology, energy technology, environmental technology, and nanotechnology.
提高对环境修复和可再生能源的认识,导致了对探索双赢策略的强烈需求,以实现污染物(“垃圾”)向储能纳米材料(“宝藏”)的生态高效转化。受细菌生物代谢的启发,嗜酸氧化亚铁硫杆菌(A. ferrooxidans)被成功开发为一种有前途的环保可持续生物工厂,通过将可溶性亚铁氧化为不溶性铁物质(黄钾铁矾,KFe(SO )(OH)),并进行简便的后续热处理,可控地制备α-FeO 纳米棒。结果表明,生物代谢α-FeO 纳米棒中稳定的固体电解质界面层和原位形成的奇妙裂缝起着重要作用,不仅显著提高了结构稳定性,而且促进了电子和离子的转移。因此,这些生物代谢α-FeO 纳米棒在 200 次循环中以 100 mA g 的电流密度提供了 673.9 mAh g 的优异稳定容量和卓越的多倍率性能,明显优于商业对照物。人们高度期望这种生物合成策略能够为生物技术、能源技术、环境技术和纳米技术相互关联的新兴研究领域带来新的曙光。