Department of Physics and Astronomy and LaserLaB Amsterdam , Vrije Universiteit Amsterdam , 1081 HV Amsterdam , The Netherlands.
Moleculaire Biofysica, Zernike Instituut , Rijksuniversiteit Groningen , 9712 CP Groningen , The Netherlands.
Nano Lett. 2019 Aug 14;19(8):5746-5753. doi: 10.1021/acs.nanolett.9b02376. Epub 2019 Aug 1.
While the structure of a multitude of viral particles has been resolved to atomistic detail, their assembly pathways remain largely elusive. Key unresolved issues are particle nucleation, particle growth, and the mode of genome compaction. These issues are difficult to address in bulk approaches and are effectively only accessible by the real-time tracking of assembly dynamics of individual particles. This we do here by studying the assembly into rod-shaped viruslike particles (VLPs) of artificial capsid polypeptides. Using fluorescence optical tweezers, we establish that small oligomers perform one-dimensional diffusion along the DNA. Larger oligomers are immobile and nucleate VLP growth. A multiplexed acoustic force spectroscopy approach reveals that DNA is compacted in regular steps, suggesting packaging via helical wrapping into a nucleocapsid. By reporting how real-time assembly tracking elucidates viral nucleation and growth principles, our work opens the door to a fundamental understanding of the complex assembly pathways of both VLPs and naturally evolved viruses.
虽然已经解析了大量病毒粒子的结构细节,但它们的组装途径在很大程度上仍然难以捉摸。尚未解决的关键问题包括粒子成核、粒子生长和基因组压缩方式。这些问题在批量方法中难以解决,实际上只能通过实时跟踪单个粒子的组装动力学来解决。在这里,我们通过研究人工衣壳多肽组装成杆状病毒样颗粒 (VLPs) 来解决这些问题。我们使用荧光光学镊子发现,小寡聚体能沿 DNA 进行一维扩散。较大的寡聚体是不动的,并且引发 VLP 的生长。多重声力光谱法揭示了 DNA 是按规则的步骤进行压缩的,这表明通过螺旋缠绕到核衣壳中进行包装。通过报告实时组装跟踪如何阐明病毒成核和生长原理,我们的工作为深入了解 VLPs 和自然进化病毒的复杂组装途径打开了大门。