Peña Jason, Dagdug Leonardo, Reguera David
Physics Department, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico.
Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
Entropy (Basel). 2025 Mar 8;27(3):281. doi: 10.3390/e27030281.
The self-assembly mechanisms of various complex biological structures, including viral capsids and carboxysomes, have been theoretically studied through numerous kinetic models. However, most of these models focus on the equilibrium aspects of a simplified kinetic description in terms of a single reaction coordinate, typically the number of proteins in a growing aggregate, which is often insufficient to describe the size and shape of the resulting structure. In this article, we use mesoscopic non-equilibrium thermodynamics (MNET) to derive the equations governing the non-equilibrium kinetics of viral capsid formation. The resulting kinetic equation is a Fokker-Planck equation, which considers viral capsid self-assembly as a diffusive process in the space of the relevant reaction coordinates. We discuss in detail the case of the self-assembly of a spherical (icosahedral) capsid with a fixed radius, which corresponds to a single degree of freedom, and indicate how to extend this approach to the self-assembly of spherical capsids that exhibit radial fluctuations, as well as to tubular structures and systems with higher degrees of freedom. Finally, we indicate how these equations can be solved in terms of the equivalent Langevin equations and be used to determine the rate of formation and size distribution of closed capsids, opening the door to the better understanding and control of the self- assembly process.
包括病毒衣壳和羧酶体在内的各种复杂生物结构的自组装机制,已通过众多动力学模型进行了理论研究。然而,这些模型大多侧重于简化动力学描述的平衡方面,该描述基于单个反应坐标,通常是生长聚集体中的蛋白质数量,而这往往不足以描述所得结构的大小和形状。在本文中,我们使用介观非平衡热力学(MNET)来推导控制病毒衣壳形成的非平衡动力学方程。所得的动力学方程是一个福克 - 普朗克方程,它将病毒衣壳自组装视为相关反应坐标空间中的扩散过程。我们详细讨论了具有固定半径的球形(二十面体)衣壳的自组装情况,这对应于单个自由度,并指出如何将此方法扩展到表现出径向波动的球形衣壳的自组装,以及管状结构和具有更高自由度的系统。最后,我们指出如何根据等效的朗之万方程求解这些方程,并用于确定封闭衣壳的形成速率和大小分布,从而为更好地理解和控制自组装过程打开大门。