Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana.
Department of Kinesiology, Kansas State University, Manhattan, Kansas.
J Appl Physiol (1985). 2019 Oct 1;127(4):930-939. doi: 10.1152/japplphysiol.00297.2019. Epub 2019 Aug 1.
The oxygen partial pressure in the interstitial space (Po) drives O into the myocyte via diffusion, thus supporting oxidative phosphorylation. Although crucial for metabolic recovery and the capacity to perform repetitive tasks, the time course of skeletal muscle Po during recovery from contractions remains unknown. We tested the hypothesis that Po would recover to resting values and display considerable on-off asymmetry (fast on-, slow off-kinetics), reflective of asymmetric capillary hemodynamics. Microvascular Po (Po) was also evaluated to test the hypothesis that a significant transcapillary gradient (ΔPo = Po - Po) would be sustained during recovery. Po and Po (expressed in mmHg) were determined via phosphorescence quenching in the exposed rat spinotrapezius muscle during and after submaximal twitch contractions ( = 12). Po rose exponentially ( < 0.05) from end-contraction (11.1 ± 5.1), such that the end-recovery value (17.9 ± 7.9) was not different from resting Po (18.5 ± 8.1; > 0.05). Po off-kinetics were slower than on-kinetics (mean response time: 53.1 ± 38.3 versus 18.5 ± 7.3 s; < 0.05). A significant transcapillary ΔPo observed at end-contraction (16.6 ± 7.4) was maintained throughout recovery (end-recovery: 18.8 ± 9.6; > 0.05). Consistent with our hypotheses, muscle Po recovered to resting values with slower off-kinetics compared with the on-transient in line with the on-off asymmetry for capillary hemodynamics. Maintenance of a substantial transcapillary ΔPo during recovery supports that the microvascular-interstitium interface provides considerable resistance to O transport. As dictated by Fick's law (V̇o = Do × ΔPo), modulation of O flux (V̇o) during recovery must be achieved via corresponding changes in effective diffusing capacity (Do; mainly capillary red blood cell hemodynamics and distribution) in the face of unaltered ΔPo. Capillary blood-myocyte O flux (V̇o) is determined by effective diffusing capacity (Do; mainly erythrocyte hemodynamics and distribution) and microvascular-interstitial Po gradients (ΔPo = Po - Po). We show that Po demonstrates on-off asymmetry consistent with Po and erythrocyte kinetics during metabolic transitions. A substantial transcapillary ΔPo was preserved during recovery from contractions, indicative of considerable resistance to O diffusion at the microvascular-interstitium interface. This reveals that effective Do declines in step with V̇o during recovery, as per Fick's law.
间质空间中的氧分压(Po)通过扩散将氧气带入肌细胞,从而支持氧化磷酸化。尽管这对于代谢恢复和执行重复任务的能力至关重要,但收缩后骨骼肌 Po 的恢复时间过程仍然未知。我们测试了以下假设,即 Po 将恢复到静息值,并表现出相当大的开-关不对称性(快速开启,缓慢关闭动力学),反映出不对称毛细血管血液动力学。还评估了微血管 Po(Po),以测试在恢复过程中是否会持续保持显著的跨毛细血管梯度(ΔPo=Po-Po)的假设。Po 和 Po(以 mmHg 表示)是通过在暴露的大鼠斜方肌中通过磷光猝灭在亚最大抽搐收缩期间和之后确定的(=12)。Po 呈指数上升(<0.05),从终末收缩(11.1±5.1)开始,因此终末恢复值(17.9±7.9)与静息 Po(18.5±8.1;>0.05)没有差异。Po 关闭动力学比开启动力学慢(平均响应时间:53.1±38.3 与 18.5±7.3 s;<0.05)。在终末收缩时观察到的显著跨毛细血管ΔPo(16.6±7.4)在整个恢复过程中保持不变(终末恢复:18.8±9.6;>0.05)。与我们的假设一致,与毛细血管血液动力学的开-关不对称性一致,肌肉 Po 以较慢的关闭动力学恢复到静息值。在恢复过程中保持相当大的跨毛细血管ΔPo 支持微血管-间质界面对 O 运输提供相当大的阻力。根据菲克定律(Vo=Do×ΔPo),在不改变ΔPo 的情况下,必须通过相应改变有效扩散能力(Do;主要是毛细血管红细胞血液动力学和分布)来实现 O 通量(Vo)在恢复期间的调节。毛细血管血液-肌细胞 O 通量(Vo)由有效扩散能力(Do;主要是红细胞血液动力学和分布)和微血管-间质 Po 梯度(ΔPo=Po-Po)决定。我们表明,Po 在代谢转换过程中表现出与 Po 和红细胞动力学一致的开-关不对称性。在收缩后的恢复过程中,跨毛细血管的ΔPo 保持不变,这表明在微血管-间质界面处对 O 扩散有相当大的阻力。这表明,根据菲克定律,有效 Do 在恢复期间与 Vo 成比例下降。