Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
Anal Chem. 2011 Nov 15;83(22):8756-65. doi: 10.1021/ac2022234. Epub 2011 Oct 17.
We report the synthesis, calibration, and examples of application of two new phosphorescent probes, Oxyphor R4 and Oxyphor G4, optimized specifically for in vivo oxygen imaging by phosphorescence quenching. These "protected" dendritic probes can operate in either albumin-rich (blood plasma) or albumin-free (interstitial space) environments at all physiological oxygen concentrations, from normoxic to deep hypoxic conditions. Oxyphors R4 and G4 are derived from phosphorescent Pd-meso-tetra-(3,5-dicarboxyphenyl)-porphyrin (PdP) or Pd-meso-tetra-(3,5-dicarboxyphenyl)-tetrabenzoporphyrin (PdTBP), respectively, and possess features common for protected dendritic probes, i.e., hydrophobic dendritic encapsulation of phosphorescent metalloporphyrins and hydrophilic PEGylated periphery. The new Oxyphors are highly soluble in aqueous environments and do not permeate biological membranes. The probes were calibrated under physiological conditions (pH 6.4-7.8) and temperatures (22-38 °C), showing high stability, reproducibility of signals, and lack of interactions with biological solutes. Oxyphor G4 was used to dynamically image intravascular and interstitial oxygenation in murine tumors in vivo. The physiological relevance of the measurements was demonstrated by dynamically recording changes in tissue oxygenation during application of anesthesia (isofluorane). These experiments revealed that changes in isofluorane concentration significantly affect tissue oxygenation.
我们报告了两种新的磷光探针的合成、标定和应用实例,这两种探针专门通过磷光猝灭优化,用于体内氧成像。这些“受保护”的树枝状探针可以在所有生理氧浓度下(从正常氧到深低氧条件),在富含白蛋白的(血浆)或无白蛋白的(细胞间隙)环境中工作。Oxyphors R4 和 G4 分别衍生自磷光 Pd-间-四-(3,5-二羧基苯基)卟啉(PdP)或 Pd-间-四-(3,5-二羧基苯基)-四苯并卟啉(PdTBP),并具有受保护的树枝状探针的共同特征,即磷光金属卟啉的疏水性树枝状封装和亲水性 PEG 化外围。新的 Oxyphors 在水相环境中高度溶解,并且不会穿透生物膜。探针在生理条件(pH 6.4-7.8 和温度(22-38°C)下进行标定,显示出高稳定性、信号重现性和缺乏与生物溶质的相互作用。Oxyphor G4 用于动态成像体内小鼠肿瘤的血管内和细胞间隙氧合。通过在应用麻醉剂(异氟烷)期间动态记录组织氧合的变化,证明了测量的生理相关性。这些实验表明,异氟烷浓度的变化会显著影响组织氧合。