Suppr超能文献

一种地震心动图信号质量索引和分类的统一框架。

A Unified Framework for Quality Indexing and Classification of Seismocardiogram Signals.

出版信息

IEEE J Biomed Health Inform. 2020 Apr;24(4):1080-1092. doi: 10.1109/JBHI.2019.2931348. Epub 2019 Jul 26.

Abstract

The seismocardiogram (SCG) is a noninvasively-obtained cardiovascular bio-signal that has gained traction in recent years, however is limited by its susceptibility to noise and motion artifacts. Because of this, signal quality must be assured before data are used to inform clinical care. Common methods of signal quality assurance include signal classification or assignment of a numerical quality index. Such tasks are difficult with SCG because there is no accepted standard for signal morphology. In this paper, we propose a unified method of quality indexing and classification that uses multi-subject-based methods to overcome this challenge. Dynamic-time feature matching is introduced as a novel method of obtaining the distance between a signal and reference template, with this metric, the signal quality index (SQI) is defined as a function of the inverse distance between the SCG and a large set of template signals. We demonstrate that this method is able to stratify SCG signals on held-out subjects based on their level of motion-artifact corruption. This method is extended, using the SQI as a feature for classification by ensembled quadratic discriminant analysis. Classification is validated by demonstrating, for the first time, both detection and localization of SCG sensor misplacement, achieving an F1 score of 0.83 on held-out subjects. This paper may provide a necessary step toward automating the analysis of SCG signals, addressing many of the key limitations and concerns precluding the method from being widely used in clinical and physiological sensing applications.

摘要

心震图(SCG)是一种非侵入性获得的心血管生物信号,近年来受到关注,但由于其易受噪声和运动伪影的影响而受到限制。因此,在将数据用于临床护理之前,必须确保信号质量。保证信号质量的常见方法包括信号分类或分配数字质量指数。由于 SCG 没有可接受的信号形态标准,因此此类任务具有挑战性。在本文中,我们提出了一种使用基于多主体的方法来克服这一挑战的统一质量索引和分类方法。动态时间特征匹配被引入作为一种获得信号与参考模板之间距离的新方法,使用该度量,信号质量指数(SQI)被定义为 SCG 与大量模板信号之间的逆距离的函数。我们证明,该方法能够根据运动伪影污染的程度对预留受试者的 SCG 信号进行分层。通过使用 SQI 作为集合二次判别分析的分类特征,扩展了该方法。通过首次展示 SCG 传感器错位的检测和定位,在预留受试者上实现了 0.83 的 F1 分数,验证了分类的有效性。本文可能为自动化分析 SCG 信号提供必要的步骤,解决了许多限制该方法广泛应用于临床和生理传感应用的关键限制和问题。

相似文献

1
A Unified Framework for Quality Indexing and Classification of Seismocardiogram Signals.一种地震心动图信号质量索引和分类的统一框架。
IEEE J Biomed Health Inform. 2020 Apr;24(4):1080-1092. doi: 10.1109/JBHI.2019.2931348. Epub 2019 Jul 26.
3
Modeling Consistent Dynamics of Cardiogenic Vibrations in Low-Dimensional Subspace.在低维子空间中对心源性振动的一致动力学进行建模。
IEEE J Biomed Health Inform. 2020 Jul;24(7):1887-1898. doi: 10.1109/JBHI.2020.2980979. Epub 2020 Mar 16.
4
10
Automated Detection of Atrial Fibrillation Based on Time-Frequency Analysis of Seismocardiograms.基于心震图时频分析的心房颤动自动检测
IEEE J Biomed Health Inform. 2017 Sep;21(5):1233-1241. doi: 10.1109/JBHI.2016.2621887. Epub 2016 Nov 4.

引用本文的文献

1
Heart rate informed detection of cardiac events using the Kalman filter.使用卡尔曼滤波器进行心率辅助的心脏事件检测。
Comput Biol Med. 2025 Sep;195:110480. doi: 10.1016/j.compbiomed.2025.110480. Epub 2025 Jun 19.

本文引用的文献

1
Recent Advances in Seismocardiography.地震心图学的最新进展
Vibration. 2019 Mar;2(1):64-86. doi: 10.3390/vibration2010005. Epub 2019 Jan 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验