Suppr超能文献

基于独立成分分析的心-机械信号运动噪声消除方法。

An Independent Component Analysis Approach to Motion Noise Cancelation of Cardio-Mechanical Signals.

出版信息

IEEE Trans Biomed Eng. 2019 Mar;66(3):784-793. doi: 10.1109/TBME.2018.2856700. Epub 2018 Jul 17.

Abstract

This paper proposes a new framework for measuring sternal cardio-mechanical signals from moving subjects using multiple sensors. An array of inertial measurement units are attached to the chest wall of subjects to measure the seismocardiogram (SCG) from accelerometers and the gyrocardiogram (GCG) from gyroscopes. A digital signal processing method based on constrained independent component analysis is applied to extract the desired cardio-mechanical signals from the mixture of vibration observations. Electrocardiogram and photoplethysmography modalities are evaluated as reference sources for the constrained independent component analysis algorithm. Experimental studies with 14 young, healthy adult subjects demonstrate the feasibility of extracting seismo- and gyrocardiogram signals from walking and jogging subjects, with speeds of 3.0 mi/h and 4.6 mi/h, respectively. Beat-to-beat and ensemble-averaged features are extracted from the outputs of the algorithm. The beat-to-beat cardiac interval results demonstrate average detection rates of 91.44% during walking and 86.06% during jogging from SCG, and 87.32% during walking and 76.30% during jogging from GCG. The ensemble-averaged pre-ejection period (PEP) calculation results attained overall squared correlation coefficients of 0.9048 from SCG and 0.8350 from GCG with reference PEP from impedance cardiogram. Our results indicate that the proposed framework can improve the motion tolerance of cardio-mechanical signals in moving subjects. The effective number of recordings during day time could be potentially increased by the proposed framework, which will push forward the implementation of cardio-mechanical monitoring devices in mobile healthcare.

摘要

本文提出了一种使用多个传感器从运动受试者中测量胸骨心机械信号的新框架。将一组惯性测量单元附着在受试者的胸壁上,从加速度计测量地震心动图 (SCG),从陀螺仪测量心陀螺图 (GCG)。应用基于约束独立分量分析的数字信号处理方法从振动观测的混合中提取所需的心机械信号。评估心电图和光电容积描记术模式作为约束独立分量分析算法的参考源。对 14 名年轻健康的成年受试者进行的实验研究表明,从以 3.0 英里/小时和 4.6 英里/小时的速度行走和慢跑的受试者中提取地震心动图和心陀螺图信号是可行的。从算法的输出中提取出逐拍和整体平均特征。从 SCG 获得的逐拍心脏间隔结果表明,行走时的平均检测率为 91.44%,慢跑时为 86.06%;从 GCG 获得的行走时为 87.32%,慢跑时为 76.30%。整体平均射血前期 (PEP) 计算结果从 SCG 获得的总体平方相关系数为 0.9048,从 GCG 获得的总体平方相关系数为 0.8350,参考阻抗心动图的 PEP。我们的结果表明,所提出的框架可以提高运动受试者中心机械信号的运动耐受性。所提出的框架可以潜在地增加白天的有效记录数量,这将推动心机械监测设备在移动医疗保健中的实施。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验