Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75013, Paris, France.
Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, Orsay, 91405, France.
Exp Cell Res. 2019 Oct 15;383(2):111539. doi: 10.1016/j.yexcr.2019.111539. Epub 2019 Jul 29.
Desminopathies are a type of myofibrillar myopathy resulting from mutations in DES, encoding the intermediate filament protein desmin. They display heterogeneous phenotypes, suggesting environment influences. Patient muscle proteins show oxidative features linking oxidative stress, protein aggregation, and abnormal protein deposition. To improve understanding of redox balance in desminopathies, we further developed cellular models of four pathological mutants localized in 2B helical domain (the most important region for desmin polymerization) to explore desmin behavior upon oxidative stress. We show that the mutations desQ389P and desD399Y share common stress-induced aggregates, desR406W presents more scattered cytoplasmic aggregative pattern, and pretreatment with N-acetyl-l-cysteine (NAC), an antioxidant molecule, prevents all type of aggregation. Mutants desD399Y and desR406W had delayed oxidation kinetics following HO stress prevented by NAC pretreatment. Further, we used AAV-injected mouse models to confirm in vivo effects of N-acetyl-l-cysteine. AAV-desD399Y-injected muscles displayed similar physio-pathological characteristics as observed in patients. However, after 2 months of NAC treatment, they did not have reduced aggregates. Finally, in both models, stress induced some post-translational modifications changing Isoelectric Point, such as potential hyperphosphorylations, and/or molecular weight of human desmin by proteolysis. However, each mutant presented its own pattern that seemed to be post-aggregative. In conclusion, our results indicate that individual desmin mutations have unique pathological molecular mechanisms partly linked to alteration of redox homeostasis. Integrating these mutant-specific behaviors will be important when considering future therapeutics.
桥粒芯胶丝蛋白病是一种由 DES 基因突变引起的肌原纤维肌病,DES 编码桥粒芯胶丝蛋白。它们表现出异质性的表型,提示环境影响。患者肌肉蛋白显示出氧化特征,与氧化应激、蛋白聚集和异常蛋白沉积有关。为了更好地了解桥粒芯胶丝病中的氧化还原平衡,我们进一步开发了四个位于 2B 螺旋区(桥粒芯胶丝蛋白聚合的最重要区域)的病理突变体的细胞模型,以研究氧化应激下桥粒芯胶丝的行为。我们发现突变体 desQ389P 和 desD399Y 具有共同的应激诱导聚集物,desR406W 呈现出更分散的细胞质聚集模式,而抗氧化剂 N-乙酰-L-半胱氨酸(NAC)预处理可以防止所有类型的聚集。突变体 desD399Y 和 desR406W 在 NAC 预处理阻止 HO 应激后,氧化动力学延迟。此外,我们使用 AAV 注射的小鼠模型来确认体内 N-乙酰-L-半胱氨酸的作用。AAV-desD399Y 注射肌肉显示出与患者观察到的相似的生理病理特征。然而,在 NAC 治疗 2 个月后,它们的聚集物没有减少。最后,在两种模型中,应激诱导了一些翻译后修饰,改变了等电点,如潜在的过度磷酸化,和/或人桥粒芯胶丝的分子量通过蛋白水解。然而,每个突变体都表现出自己的模式,似乎是在聚集之后。总之,我们的结果表明,个别桥粒芯胶丝突变具有独特的病理分子机制,部分与氧化还原平衡的改变有关。整合这些突变体特异性行为对于考虑未来的治疗方法将是重要的。