Suppr超能文献

基于更快对抗识别网络的多模态 MRI 下自动脊椎滑脱分级。

Automatic spondylolisthesis grading from MRIs across modalities using faster adversarial recognition network.

机构信息

University of Western Ontario, London, ON, Canada.

Department of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China.

出版信息

Med Image Anal. 2019 Dec;58:101533. doi: 10.1016/j.media.2019.101533. Epub 2019 Jul 19.

Abstract

Grading spondylolisthesis into several stages from MRI images is challenging because detecting critical vertebrae and locating landmarks in images of different characteristics is difficult. We propose Faster Adversarial Recognition (FAR) network to accurately perform spondylolisthesis grading by excellently detecting critical vertebrae without the need of locating the landmarks. The FAR network introduces the adversarial scheme by using a multi-task recognition network as the generator and an adversarial module as the discriminator. The multi-task recognition network (generator) is an integrated network that can reliably perform multi-scale hierarchical feature learning, critical vertebrae detection, detected vertebrae classification, bounding box regression, and spondylolisthesis grading in a hybrid supervised manner. The adversarial module (discriminator) takes the detection results as inputs to supervise the generative network by leveraging the high-order statistics of the distribution of the detected bounding box coordinates. The FAR network is evaluated to be accurate and robust in spondylolisthesis grading (training accuracy: 0.9883 ± 0.0094, testing accuracy: 0.8933 ± 0.0276) for MRI images of different modalities, which can be attributed to the excellent critical vertebrae detection (detection mAP for training: 1 ± 0, for testing: 0.9636 ± 0.0180, and IoU (Intersection-over-union)  ≥ 0.9/0.8 for most detections with their corresponding ground truth in the training/testing dataset). This accuracy is comparable to that of the physicians and outperforms other state-of-the-art methods. These results indicate the potential of our framework to perform spondylolisthesis grading for clinical diagnosis.

摘要

从 MRI 图像中将脊柱滑脱分级为几个阶段具有挑战性,因为在具有不同特征的图像中检测关键椎体和定位地标很困难。我们提出了快速对抗识别(FAR)网络,通过出色地检测关键椎体而无需定位地标,从而准确地进行脊柱滑脱分级。FAR 网络通过使用多任务识别网络作为生成器和对抗模块作为鉴别器来引入对抗方案。多任务识别网络(生成器)是一个集成网络,它可以可靠地执行多尺度分层特征学习、关键椎体检测、检测椎体分类、边界框回归和混合监督下的脊柱滑脱分级。对抗模块(鉴别器)以检测结果作为输入,通过利用检测边界框坐标分布的高阶统计信息来监督生成网络。FAR 网络在不同模态的 MRI 图像中的脊柱滑脱分级中表现出准确性和鲁棒性(训练准确性:0.9883 ± 0.0094,测试准确性:0.8933 ± 0.0276),这可归因于出色的关键椎体检测(训练时的检测 mAP:1 ± 0,测试时:0.9636 ± 0.0180,并且在训练/测试数据集)中,大多数检测的 IoU(交集与并集之比)≥0.9/0.8与相应的地面实况相对应。该准确性可与医师的准确性相媲美,并且优于其他最先进的方法。这些结果表明,我们的框架具有用于临床诊断的脊柱滑脱分级的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验