Suppr超能文献

非厄米特超材料中的非对称声能传输

Asymmetric acoustic energy transport in non-Hermitian metamaterials.

作者信息

Thevamaran Ramathasan, Branscomb Richard Massey, Makri Eleana, Anzel Paul, Christodoulides Demetrios, Kottos Tsampikos, Thomas Edwin L

机构信息

Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.

Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, USA.

出版信息

J Acoust Soc Am. 2019 Jul;146(1):863. doi: 10.1121/1.5114919.

Abstract

The ability to control and direct acoustic energy is essential for many engineering applications such as vibration and noise control, invisibility cloaking, acoustic sensing, energy harvesting, and phononic switching and rectification. The realization of acoustic regulators requires overcoming fundamental challenges inherent to the time-reversal nature of wave equations. Typically, this is achieved by utilizing either a parameter that is odd-symmetric under time-reversal or by introducing passive nonlinearities. The former approach is power consuming while the latter has two major deficiencies: it has high insertion losses and the outgoing signal is harvested in a different frequency than that of the incident wave due to harmonic generation. Here, a unique approach is adopted that exploits spatially distributed linear and nonlinear losses in a fork-shaped resonant metamaterials. This compact metamaterial design demonstrates asymmetric acoustic reflectance and transmittance, and acoustic switching. In contrast to previous studies, the non-Hermitian metamaterials exhibit asymmetric transport with high frequency purity of the outgoing signal.

摘要

控制和引导声能的能力对于许多工程应用至关重要,如振动和噪声控制、隐身斗篷、声学传感、能量收集以及声子开关和整流。实现声学调节器需要克服波动方程时间反转特性所固有的基本挑战。通常,这是通过利用时间反转下奇对称的参数或引入无源非线性来实现的。前一种方法功耗大,而后一种方法有两个主要缺点:插入损耗高,并且由于谐波产生,输出信号的频率与入射波不同。在此,采用了一种独特的方法,该方法利用叉形共振超材料中的空间分布线性和非线性损耗。这种紧凑的超材料设计展示了不对称的声反射率和透射率以及声学开关特性。与先前的研究相比,非厄米特超材料表现出具有高频纯净输出信号的不对称传输。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验