Institute of Biomembrane and Biopharmaceutics, Shanghai University, Shanghai, 200444, China.
Central Laboratory and Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
Neurosci Bull. 2020 Jan;36(1):11-24. doi: 10.1007/s12264-019-00413-5. Epub 2019 Aug 1.
Genetic mutants of voltage-gated sodium channels (VGSCs) are considered to be responsible for the increasing number of epilepsy syndromes. Previous research has indicated that mutations of one of the VGSC genes, SCN9A (Nav1.7), result in febrile seizures and Dravet syndrome in humans. Despite these recent efforts, the electrophysiological basis of SCN9A mutations remains unclear. Here, we performed a genetic screen of patients with febrile seizures and identified a novel missense mutation of SCN9A (W1150R). Electrophysiological characterization of different SCN9A mutants in HEK293T cells, the previously-reported N641Y and K655R variants, as well as the newly-found W1150R variant, revealed that the current density of the W1150R and N641Y variants was significantly larger than that of the wild-type (WT) channel. The time constants of recovery from fast inactivation of the N641Y and K655R variants were markedly lower than in the WT channel. The W1150R variant caused a negative shift of the G-V curve in the voltage dependence of steady-state activation. All mutants displayed persistent currents larger than the WT channel. In addition, we found that oxcarbazepine (OXC), one of the antiepileptic drugs targeting VGSCs, caused a significant shift to more negative potential for the activation and inactivation in WT and mutant channels. OXC-induced inhibition of currents was weaker in the W1150R variant than in the WT. Furthermore, with administering OXC the time constant of the N641Y variant was longer than those of the other two SCN9A mutants. In all, our results indicated that the point mutation W1150R resulted in a novel gain-of-function variant. These findings indicated that SCN9A mutants contribute to an increase in seizure, and show distinct sensitivity to OXC.
电压门控钠离子通道(VGSCs)的遗传突变体被认为是导致越来越多的癫痫综合征的原因。以前的研究表明,VGSC 基因之一 SCN9A(Nav1.7)的突变导致人类热性惊厥和 Dravet 综合征。尽管最近进行了这些努力,但 SCN9A 突变的电生理基础仍不清楚。在这里,我们对热性惊厥患者进行了基因筛查,并发现了 SCN9A(W1150R)的一种新的错义突变。在 HEK293T 细胞中对不同 SCN9A 突变体的电生理特征进行表征,包括之前报道的 N641Y 和 K655R 变体,以及新发现的 W1150R 变体,结果表明 W1150R 和 N641Y 变体的电流密度明显大于野生型(WT)通道。N641Y 和 K655R 变体的快速失活恢复时间常数明显低于 WT 通道。W1150R 变体导致稳态激活电压依赖性中的 G-V 曲线发生负移。所有突变体都显示出比 WT 通道更大的持续电流。此外,我们发现 oxcarbazepine(OXC),一种针对 VGSCs 的抗癫痫药物之一,导致 WT 和突变通道的激活和失活向更负的电位发生显著偏移。与 WT 相比,OXC 对 W1150R 变体电流的抑制作用较弱。此外,在用 OXC 处理时,N641Y 变体的时间常数比其他两种 SCN9A 突变体的时间常数长。总之,我们的结果表明,点突变 W1150R 导致了一种新的功能获得性变体。这些发现表明 SCN9A 突变体导致癫痫发作增加,并对 OXC 表现出不同的敏感性。