Department of Microbiology , Harvard Medical School , 4 Blackfan Circle , Boston , Massachusetts 02115 , United States.
Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States.
J Am Chem Soc. 2019 Aug 21;141(33):12974-12978. doi: 10.1021/jacs.9b06061. Epub 2019 Aug 7.
O-GlcNAc is an abundant post-translational modification found on nuclear and cytoplasmic proteins in all metazoans. This modification regulates a wide variety of cellular processes, and elevated O-GlcNAc levels have been implicated in cancer progression. A single essential enzyme, O-GlcNAc transferase (OGT), is responsible for all nucleocytoplasmic O-GlcNAcylation. Understanding how this enzyme chooses its substrates is critical for understanding, and potentially manipulating, its functions. Here we use protein microarray technology and proteome-wide glycosylation profiling to show that conserved aspartate residues in the tetratricopeptide repeat (TPR) lumen of OGT drive substrate selection. Changing these residues to alanines alters substrate selectivity and unexpectedly increases rates of protein glycosylation. Our findings support a model where sites of glycosylation for many OGT substrates are determined by TPR domain contacts to substrate side chains five to fifteen residues C-terminal to the glycosite. In addition to guiding design of inhibitors that target OGT's TPR domain, this information will inform efforts to engineer substrates to explore biological functions.
O-GlcNAc 是一种广泛存在于所有后生动物的核蛋白和细胞质蛋白中的翻译后修饰。这种修饰调节着各种细胞过程,并且升高的 O-GlcNAc 水平与癌症的进展有关。一种单一的必需酶,O-GlcNAc 转移酶(OGT),负责所有核质的 O-GlcNAcylation。了解这种酶如何选择其底物对于理解和潜在地操纵其功能至关重要。在这里,我们使用蛋白质微阵列技术和蛋白质组范围的糖基化分析来表明 OGT 的四肽重复(TPR)腔中的保守天冬氨酸残基驱动底物选择。将这些残基改变为丙氨酸会改变底物选择性,并出人意料地增加蛋白质糖基化的速率。我们的发现支持了这样一种模型,即许多 OGT 底物的糖基化位点是由 TPR 结构域与糖基化位点后五个到十五个残基的底物侧链的接触来决定的。除了指导针对 OGT 的 TPR 结构域的抑制剂的设计之外,这些信息将为设计工程底物以探索生物学功能提供信息。