Suppr超能文献

光可激活的O-连接N-乙酰葡糖胺转移酶文库实现了对溶剂暴露的TPR结构域相互作用的共价化学捕获。

Photoactivatable O-GlcNAc Transferase Library Enables Covalent Chemical Capture of Solvent-Exposed TPR Domain Interactions.

作者信息

Joiner Cassandra M, Glogowski Tiarra J, NewRingeisen Erin M, Huynh Huy V, Roberts Melanie G, Rognerud Madison M, Huebsch Hahns E

机构信息

Department of Chemistry, St. Olaf College, 1520 St. Olaf Ave., Northfield, MN, 55057.

出版信息

Chembiochem. 2025 Jan 2;26(1):e202400709. doi: 10.1002/cbic.202400709. Epub 2024 Nov 25.

Abstract

O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) is an essential, stress-sensing enzyme responsible for adding the O-GlcNAc monosaccharide to thousands of nuclear and cytoplasmic proteins to regulate cellular homeostasis. OGT substrates are found in almost all intracellular processes, and perturbations in protein O-GlcNAc levels have been implicated in proteostatic diseases, such as cancers, metabolic disorders, and neurodegeneration. This broad disease activity makes OGT an attractive therapeutic target; however, the substrate diversity makes pan-inhibition as a therapeutic strategy unfeasible. Rather, a substrate-specific approach to targeting is more advantageous, but how OGT chooses its substrates remains poorly understood. Substrate specificity is controlled by the interactions between OGT's non-catalytic tetratricopeptide repeat (TPR) domain, rather than its glycosyltransferase domain. OGT's TPR domain forms a 100 Å superhelical structure, containing a lumenal surface, known as the substrate-binding surface, and a solvent-exposed surface. To date, there are no tools to site-selectively target regions of the domain and differentiate between the two binding surfaces. Here, we developed a library of recombinant OGT constructs containing site-specifically incorporated photoactivatable unnatural amino acids (UAAs) along the solvent-exposed surface of the TPR domain to covalently capture and map OGT's interactome.

摘要

O-连接的N-乙酰葡糖胺(O-GlcNAc)转移酶(OGT)是一种重要的应激感应酶,负责将O-GlcNAc单糖添加到数千种核蛋白和胞质蛋白上,以调节细胞内稳态。OGT底物几乎存在于所有细胞内过程中,蛋白质O-GlcNAc水平的扰动与蛋白质稳态疾病有关,如癌症、代谢紊乱和神经退行性变。这种广泛的疾病活性使OGT成为一个有吸引力的治疗靶点;然而,底物多样性使得泛抑制作为一种治疗策略不可行。相反,一种针对底物特异性的方法更具优势,但OGT如何选择其底物仍知之甚少。底物特异性由OGT的非催化四肽重复(TPR)结构域而非其糖基转移酶结构域之间的相互作用控制。OGT的TPR结构域形成一个100 Å的超螺旋结构,包含一个腔表面,称为底物结合表面,以及一个溶剂暴露表面。迄今为止,尚无工具可对该结构域的区域进行位点选择性靶向,并区分两个结合表面。在此,我们开发了一个重组OGT构建体文库,该文库沿着TPR结构域的溶剂暴露表面包含位点特异性掺入的光活化非天然氨基酸(UAA),以共价捕获并绘制OGT的相互作用组。

相似文献

1
Photoactivatable O-GlcNAc Transferase Library Enables Covalent Chemical Capture of Solvent-Exposed TPR Domain Interactions.
Chembiochem. 2025 Jan 2;26(1):e202400709. doi: 10.1002/cbic.202400709. Epub 2024 Nov 25.
2
Dissecting OGT's TPR domain to identify determinants of cellular function.
Proc Natl Acad Sci U S A. 2024 May 28;121(22):e2401729121. doi: 10.1073/pnas.2401729121. Epub 2024 May 20.
3
Protein Substrates Engage the Lumen of O-GlcNAc Transferase's Tetratricopeptide Repeat Domain in Different Ways.
Biochemistry. 2021 Mar 23;60(11):847-853. doi: 10.1021/acs.biochem.0c00981. Epub 2021 Mar 12.
4
Aspartate Residues Far from the Active Site Drive O-GlcNAc Transferase Substrate Selection.
J Am Chem Soc. 2019 Aug 21;141(33):12974-12978. doi: 10.1021/jacs.9b06061. Epub 2019 Aug 7.
5
O-GlcNAc Transferase Recognizes Protein Substrates Using an Asparagine Ladder in the Tetratricopeptide Repeat (TPR) Superhelix.
J Am Chem Soc. 2018 Mar 14;140(10):3510-3513. doi: 10.1021/jacs.7b13546. Epub 2018 Mar 5.
6
Truncation of the TPR domain of OGT alters substrate and glycosite selection.
Anal Bioanal Chem. 2021 Dec;413(30):7385-7399. doi: 10.1007/s00216-021-03731-8. Epub 2021 Nov 2.
8
Elucidating the protein substrate recognition of O-GlcNAc transferase (OGT) toward O-GlcNAcase (OGA) using a GlcNAc electrophilic probe.
Int J Biol Macromol. 2021 Feb 1;169:51-59. doi: 10.1016/j.ijbiomac.2020.12.078. Epub 2020 Dec 18.
9
Roles of the tetratricopeptide repeat domain in O-GlcNAc transferase targeting and protein substrate specificity.
J Biol Chem. 2003 Jul 4;278(27):24608-16. doi: 10.1074/jbc.M300036200. Epub 2003 Apr 30.

本文引用的文献

1
Dissecting OGT's TPR domain to identify determinants of cellular function.
Proc Natl Acad Sci U S A. 2024 May 28;121(22):e2401729121. doi: 10.1073/pnas.2401729121. Epub 2024 May 20.
2
Cryo-EM structure of human O-GlcNAcylation enzyme pair OGT-OGA complex.
Nat Commun. 2023 Oct 31;14(1):6952. doi: 10.1038/s41467-023-42427-8.
3
Growing and dividing: how O-GlcNAcylation leads the way.
J Biol Chem. 2023 Nov;299(11):105330. doi: 10.1016/j.jbc.2023.105330. Epub 2023 Oct 12.
4
Genetically encoded crosslinkers to address protein-protein interactions.
Protein Sci. 2023 May;32(5):e4637. doi: 10.1002/pro.4637.
5
New Insights Into the Biology of Protein O-GlcNAcylation: Approaches and Observations.
Front Aging. 2021 Mar 12;1:620382. doi: 10.3389/fragi.2020.620382. eCollection 2020.
6
Protein O-GlcNAcylation in cardiovascular diseases.
Acta Pharmacol Sin. 2023 Jan;44(1):8-18. doi: 10.1038/s41401-022-00934-2. Epub 2022 Jul 11.
8
Truncation of the TPR domain of OGT alters substrate and glycosite selection.
Anal Bioanal Chem. 2021 Dec;413(30):7385-7399. doi: 10.1007/s00216-021-03731-8. Epub 2021 Nov 2.
10
Mechanistic roles for altered O-GlcNAcylation in neurodegenerative disorders.
Biochem J. 2021 Jul 30;478(14):2733-2758. doi: 10.1042/BCJ20200609.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验