Suppr超能文献

低温复温导致心肌收缩功能障碍的基础是肌钙蛋白 I 磷酸化。

Cardiac troponin-I phosphorylation underlies myocardial contractile dysfunction induced by hypothermia rewarming.

机构信息

Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota.

Anesthesia and Critical Care Research Group, Institute of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway.

出版信息

Am J Physiol Heart Circ Physiol. 2019 Oct 1;317(4):H726-H731. doi: 10.1152/ajpheart.00101.2019. Epub 2019 Aug 2.

Abstract

Rewarming the intact heart after a period of hypothermia is associated with reduced myocardial contractility, decreased Ca sensitivity, and increased cardiac troponin-I (cTnI) phosphorylation. We hypothesized that hypothermia/rewarming (H/R) induces left ventricular (LV) contractile dysfunction due to phosphorylation of cTnI at Ser. To test this hypothesis, the response of wild-type mice ( = 7) to H/R was compared with transgenic (TG) mice expressing slow skeletal TnI (TG-ssTnI; = 7) that lacks the Ser phosphorylation sites. Hypothermia was induced by surface cooling and maintained at 23-25°C for 3 h. Subsequently, the animals were rewarmed to 37°C. LV systolic and diastolic function was assessed using a 1.4 F pressure-volume Millar catheter introduced via the right carotid artery. At baseline conditions, there were no significant differences in LV systolic function between wild-type and TG-ssTnI mice, whereas measurements of diastolic function [isovolumic relaxation constant (τ) and end-diastolic pressure-volume relationship (EDPVR)] were significantly ( < 0.05) reduced in TG-ssTnI animals. Immediately after rewarming, significant differences between groups were found in cardiac output (CO; wild-type 6.6 ± 0.7 vs. TG-ssTnI 8.8 ± 0.7 mL/min), stroke work (SW; wild-type 796 ± 112 vs. TG-ssTnI 1208 ± 67 mmHg/μL), and the preload recruited stroke work (PRSW; wild-type 38.3 ± 4.9 vs. TG-ssTnI 68.8 ± 8.2 mmHg). However, EDPVR and τ returned to control levels within 1 h in both groups. We conclude that H/R-induced LV systolic dysfunction results from phosphorylation of cTnI at Ser. Rewarming following a period of accidental hypothermia leads to a form of acute cardiac failure (rewarming shock), which is in part due to reduced sensitivity to Ca activation of myocardial contraction. The results of the present study support the hypothesis that rewarming shock is due to phosphorylation of cardiac troponin I.

摘要

复温低温后完整心脏与心肌收缩力降低、钙敏感性降低和心肌肌钙蛋白 I (cTnI) 磷酸化增加有关。我们假设低温/复温 (H/R) 导致左心室 (LV) 收缩功能障碍是由于 cTnI 在 Ser 位点磷酸化。为了验证这一假设,我们比较了野生型 ( = 7) 小鼠对 H/R 的反应与表达缺乏 Ser 磷酸化位点的慢骨骼肌肌钙蛋白 I (TG-ssTnI; = 7) 的转基因 (TG) 小鼠。通过表面冷却诱导低温,并将其维持在 23-25°C 3 小时。随后,将动物复温至 37°C。使用通过右侧颈动脉引入的 1.4 F 压力-容积 Millar 导管评估 LV 收缩和舒张功能。在基础状态下,野生型和 TG-ssTnI 小鼠的 LV 收缩功能无显著差异,而 TG-ssTnI 动物的舒张功能测量值 [等容松弛常数 (τ) 和舒张末期压力-容积关系 (EDPVR)] 显著降低 ( < 0.05)。复温后立即,发现两组之间在心输出量 (CO; 野生型 6.6 ± 0.7 比 TG-ssTnI 8.8 ± 0.7 mL/min)、stroke work (SW; 野生型 796 ± 112 比 TG-ssTnI 1208 ± 67 mmHg/μL) 和预负荷招募 stroke work (PRSW; 野生型 38.3 ± 4.9 比 TG-ssTnI 68.8 ± 8.2 mmHg) 方面存在显著差异。然而,在两组中,EDPVR 和 τ 在 1 小时内均恢复至对照水平。我们得出结论,H/R 诱导的 LV 收缩功能障碍是由于 cTnI 在 Ser 位点磷酸化所致。低温后复温会导致急性心功能衰竭 (复温休克),这部分是由于心肌收缩对 Ca 激活的敏感性降低所致。本研究结果支持复温休克是由于心肌肌钙蛋白 I 磷酸化的假设。

相似文献

1
Cardiac troponin-I phosphorylation underlies myocardial contractile dysfunction induced by hypothermia rewarming.
Am J Physiol Heart Circ Physiol. 2019 Oct 1;317(4):H726-H731. doi: 10.1152/ajpheart.00101.2019. Epub 2019 Aug 2.
3
Left ventricular dysfunction following rewarming from experimental hypothermia.
J Appl Physiol (1985). 1998 Dec;85(6):2135-9. doi: 10.1152/jappl.1998.85.6.2135.
4
Cardiovascular effects of levosimendan during rewarming from hypothermia in rat.
Cryobiology. 2014 Dec;69(3):402-10. doi: 10.1016/j.cryobiol.2014.09.007. Epub 2014 Sep 30.
5
Correlations between alterations in length-dependent Ca2+ activation of cardiac myofilaments and the end-systolic pressure-volume relation.
J Muscle Res Cell Motil. 2007;28(7-8):415-9. doi: 10.1007/s10974-008-9136-y. Epub 2008 Mar 26.
6
Hypothermia/rewarming disrupts excitation-contraction coupling in cardiomyocytes.
Am J Physiol Heart Circ Physiol. 2016 Jun 1;310(11):H1533-40. doi: 10.1152/ajpheart.00840.2015. Epub 2016 Mar 18.
8
Essential role of troponin I in the positive inotropic response to isoprenaline in mouse hearts contracting auxotonically.
J Physiol. 2004 May 1;556(Pt 3):835-47. doi: 10.1113/jphysiol.2004.061176. Epub 2004 Feb 13.
9
Myocardial calcium overload during graded hypothermia and after rewarming in an in vivo rat model.
Acta Physiol (Oxf). 2013 Mar;207(3):460-9. doi: 10.1111/apha.12003. Epub 2012 Oct 1.

引用本文的文献

1
Advancements in the Management of Endocrine System Disorders and Arrhythmias: A Comprehensive Narrative Review.
Cureus. 2023 Oct 4;15(10):e46484. doi: 10.7759/cureus.46484. eCollection 2023 Oct.
4
Role of Trientine in Hypertrophic Cardiomyopathy: A Review of Mechanistic Aspects.
Pharmaceuticals (Basel). 2022 Sep 14;15(9):1145. doi: 10.3390/ph15091145.
7
Effects of TNFα on Dynamic Cytosolic Ca and Force Responses to Muscarinic Stimulation in Airway Smooth Muscle.
Front Physiol. 2021 Jul 30;12:730333. doi: 10.3389/fphys.2021.730333. eCollection 2021.
8
Dynamic cytosolic Ca and force responses to muscarinic stimulation in airway smooth muscle.
Am J Physiol Lung Cell Mol Physiol. 2021 Jul 1;321(1):L91-L101. doi: 10.1152/ajplung.00596.2020. Epub 2021 Apr 28.
9
Hemodynamic assessment of diastolic function for experimental models.
Am J Physiol Heart Circ Physiol. 2020 May 1;318(5):H1139-H1158. doi: 10.1152/ajpheart.00705.2019. Epub 2020 Mar 27.

本文引用的文献

2
Hypothermia/rewarming disrupts excitation-contraction coupling in cardiomyocytes.
Am J Physiol Heart Circ Physiol. 2016 Jun 1;310(11):H1533-40. doi: 10.1152/ajpheart.00840.2015. Epub 2016 Mar 18.
3
Cardiovascular effects of levosimendan during rewarming from hypothermia in rat.
Cryobiology. 2014 Dec;69(3):402-10. doi: 10.1016/j.cryobiol.2014.09.007. Epub 2014 Sep 30.
4
The curious role of sarcomeric proteins in control of diverse processes in cardiac myocytes.
J Gen Physiol. 2010 Jul;136(1):13-9. doi: 10.1085/jgp.201010462.
5
Mechanisms underlying hypothermia-induced cardiac contractile dysfunction.
Am J Physiol Heart Circ Physiol. 2010 Mar;298(3):H890-7. doi: 10.1152/ajpheart.00805.2009. Epub 2009 Dec 18.
6
Endurance capacity of mice selectively bred for high voluntary wheel running.
J Exp Biol. 2009 Sep 15;212(18):2908-17. doi: 10.1242/jeb.028886.
7
Changes in cardiovascular beta-adrenoceptor responses during hypothermia.
Cryobiology. 2008 Dec;57(3):246-50. doi: 10.1016/j.cryobiol.2008.09.006. Epub 2008 Sep 19.
8
The unique functions of cardiac troponin I in the control of cardiac muscle contraction and relaxation.
Biochem Biophys Res Commun. 2008 Apr 25;369(1):82-7. doi: 10.1016/j.bbrc.2007.12.114. Epub 2007 Dec 26.
10
Left ventricular volume measurement in mice by conductance catheter: evaluation and optimization of calibration.
Am J Physiol Heart Circ Physiol. 2007 Jul;293(1):H534-40. doi: 10.1152/ajpheart.01268.2006. Epub 2007 Mar 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验