Suppr超能文献

预测 SNPs 对转录因子结合亲和力的影响。

Predicting the effects of SNPs on transcription factor binding affinity.

机构信息

Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA.

Department of Human Genetics, Stanford University, Stanford, CA 94305, USA.

出版信息

Bioinformatics. 2020 Jan 15;36(2):364-372. doi: 10.1093/bioinformatics/btz612.

Abstract

MOTIVATION

Genome-wide association studies have revealed that 88% of disease-associated single-nucleotide polymorphisms (SNPs) reside in noncoding regions. However, noncoding SNPs remain understudied, partly because they are challenging to prioritize for experimental validation. To address this deficiency, we developed the SNP effect matrix pipeline (SEMpl).

RESULTS

SEMpl estimates transcription factor-binding affinity by observing differences in chromatin immunoprecipitation followed by deep sequencing signal intensity for SNPs within functional transcription factor-binding sites (TFBSs) genome-wide. By cataloging the effects of every possible mutation within the TFBS motif, SEMpl can predict the consequences of SNPs to transcription factor binding. This knowledge can be used to identify potential disease-causing regulatory loci.

AVAILABILITY AND IMPLEMENTATION

SEMpl is available from https://github.com/Boyle-Lab/SEM_CPP.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

全基因组关联研究表明,88%的与疾病相关的单核苷酸多态性 (SNP) 位于非编码区域。然而,非编码 SNP 的研究仍不够充分,部分原因是它们难以优先进行实验验证。为了解决这一不足,我们开发了 SNP 效应矩阵管道 (SEMpl)。

结果

SEMpl 通过观察全基因组功能转录因子结合位点 (TFBS) 内 SNP 的染色质免疫沉淀后深度测序信号强度的差异来估计转录因子结合亲和力。通过对 TFBS 基序内每个可能突变的影响进行编目,SEMpl 可以预测 SNP 对转录因子结合的影响。这些知识可用于识别潜在的致病调控基因座。

可用性和实施

SEMpl 可从 https://github.com/Boyle-Lab/SEM_CPP 获得。

补充信息

补充数据可在“Bioinformatics”在线获得。

相似文献

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验