Senju Takahiro, Okada Takamitsu, Takeuchi Naohide, Kozono Naoya, Nakanishi Yoshitaka, Higaki Hidehiko, Shimoto Takeshi, Nakashima Yasuharu
Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka City, Fukuoka 812-8582, Japan.
Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka City, Fukuoka 812-8582, Japan.
Clin Biomech (Bristol). 2019 Oct;69:191-196. doi: 10.1016/j.clinbiomech.2019.07.015. Epub 2019 Jul 16.
Rotator cuff tendon rupture after suture bridge repair occasionally occurs at the medial row, with remnant tendon tissue remaining at the footprint. While concentrated medial row stress is suspected to be involved in such tears, the optimal suture bridge technique remains controversial.
This study aimed to investigate the construct strength provided by suture bridge techniques having four different medial row configurations using artificial materials (n = 10 per group): Group 1, four-hole (two stitches per hole) knotless suture bridge; Group 2, eight-hole (one stitch per hole) parallel knotless suture bridge; Group 3, eight-hole non-parallel knotless suture bridge; and Group 4, eight-hole knot-tying suture bridge. Each construct underwent cyclic loading from 5 to 30 N for 20 cycles, followed by tensile testing to failure. The ultimate failure load and linear stiffness were measured.
Group 2 had the highest ultimate failure load (mean 160.54 N, SD 6.40) [Group 4 (mean 150.21 N, SD 9.76, p = 0.0138), Group 3 (mean 138.80 N, SD 7.18, p < 0.0001), and Group 1 (mean 129.35 N, SD 4.25, p < 0.0001)]. The linear stiffness of Group 2 (mean 9.32 N/mm, SD 0.25) and Group 4 (mean 9.72 N/mm, SD 0.40) was significantly higher (p = 0.0032) than that of Group 1 (mean 8.44 N/mm, SD 0.29) and Group 3 (mean 8.61 N/mm, SD 0.31).
In conclusion, increasing the number of suture-passed holes, arranging the holes in parallel, and a knotless technique improved the failure load following suture bridge repair.
缝线桥修复术后肩袖肌腱断裂偶尔会发生在内排,在肌腱附着点处会残留肌腱组织。虽然人们怀疑这种撕裂与集中在内排的应力有关,但最佳的缝线桥技术仍存在争议。
本研究旨在使用人工材料(每组n = 10)研究具有四种不同内排构型的缝线桥技术所提供的结构强度:第1组,四孔(每孔两针)无结缝线桥;第2组,八孔(每孔一针)平行无结缝线桥;第3组,八孔非平行无结缝线桥;第4组,八孔打结缝线桥。每个结构承受5至30 N的循环加载20个周期,然后进行拉伸直至破坏测试。测量极限破坏载荷和线性刚度。
第2组的极限破坏载荷最高(平均值160.54 N,标准差6.40)[第4组(平均值150.21 N,标准差9.76,p = 0.0138),第3组(平均值138.80 N,标准差7.18,p < 0.0001),第1组(平均值129.35 N,标准差4.25,p < 0.0001)]。第2组(平均值9.32 N/mm,标准差0.25)和第4组(平均值9.72 N/mm,标准差0.40)的线性刚度显著高于第1组(平均值8.44 N/mm,标准差0.29)和第3组(平均值8.61 N/mm,标准差0.31)(p = 0.0032)。
总之,增加缝线穿过的孔数、将孔平行排列以及采用无结技术可提高缝线桥修复后的破坏载荷。