Department of Psychology, Temple University, Philadelphia, PA 19122, USA.
Department of Psychology, Temple University, Philadelphia, PA 19122, USA.
J Exp Child Psychol. 2019 Nov;187:104657. doi: 10.1016/j.jecp.2019.06.010. Epub 2019 Jul 30.
Children's ability to estimate fractions on a number line is strongly related to algebra and overall high school math achievement, and number line training leads to better fraction magnitude comparisons compared with area model training. Here, we asked whether unidimensionality is necessary for the number line to promote fraction magnitude concepts and whether left-to-right orientation and labeled endpoints are sufficient. We randomly assigned second- and third-graders (N = 148) to one of four 15-min one-on-one, experimenter-led trainings. Three number line trainings had identical scripts, where the experimenter taught children to segment and shade the number line along the horizontal dimension. The number line conditions varied only in the vertical dimension of the training number line: pure unidimensional number line (17.5 cm horizontal line), hybrid unidimensional number line (17.5 × 0.6 cm rectangle), and square number line (17.5 × 17.5 cm). In the area model condition, children were taught to segment and shade a square (17.5 × 17.5 cm) along both dimensions. The conditions significantly differed in posttest fraction magnitude comparison accuracy (a transfer task), controlling for pretest accuracy, reading achievement, and age. In preregistered analyses, the hybrid unidimensional number line condition significantly outperformed the square area model condition and the square number line condition. In exploratory analyses accounting for training protocol fidelity, these results held and the pure unidimensional number line also outperformed the area model condition on fraction magnitude comparisons. We argue that unidimensionality is a critical feature of the number line for promoting fraction magnitude concepts because it aligns with a key concept-that real numbers, including fractions, can be ordered along a single dimension.
儿童在数轴上估计分数的能力与代数和整体高中数学成绩密切相关,与面积模型训练相比,数轴训练导致更好的分数大小比较。在这里,我们想知道数轴是否必须是一维的才能促进分数大小的概念,以及左右方向和标记的端点是否足够。我们随机分配了二、三年级学生(N=148)参加四个 15 分钟的一对一、由实验者主导的培训中的一个。三个数轴训练有相同的脚本,实验者教孩子们在水平维度上分割和阴影数轴。数轴条件仅在训练数轴的垂直维度上有所不同:纯一维数轴(17.5cm 水平线)、混合一维数轴(17.5×0.6cm 矩形)和正方形数轴(17.5×17.5cm)。在面积模型条件下,孩子们被教导分割和阴影正方形(17.5×17.5cm)的两个维度。在控制前测准确性、阅读成绩和年龄的情况下,后测分数大小比较准确性(转移任务)的条件差异显著。在预先注册的分析中,混合一维数轴条件显著优于正方形面积模型条件和正方形数轴条件。在考虑训练协议保真度的探索性分析中,这些结果仍然成立,纯一维数轴在分数大小比较方面也优于面积模型条件。我们认为,数轴的一维性是促进分数大小概念的关键特征,因为它与一个关键概念一致,即实数,包括分数,可以沿着一个单一的维度排列。