Stachaczyk Martyna, Atashzar Seyed Farokh, Farina Dario
IEEE Int Conf Rehabil Robot. 2019 Jun;2019:671-675. doi: 10.1109/ICORR.2019.8779482.
In myocontrol of neuroprosthetic devices, multichannel electromyography (EMG) can be used to decode the intended motor command, based on distributed activation patterns of stump muscles. In this regard, the high density EMG (HD-EMG) approach allows for enhancement of the spatiotemporal resolution for motor intention detection. Despite the advantages of relying on several EMG channels, the challenge of high-density electrode systems is the dynamically changing electrode-skin contact impedance, which can affect a considerable number of electrodes over the time of data acquisition. This can result in obtaining unreliable, low-quality EMG recording with a distributed artifact pattern over the grid of EMG sensors. To address this issue, we propose a novel online approach for adaptive information extraction and enhancement for automatic artifact detection and attenuation in HD-EMG-based myocontrol of prosthetic devices. The method is based on an adaptive weighting scheme that modifies the contribution of each HD-EMG channel considering the spectral information content relative to artifacts. The technique (named IE-HD-EMG) was tested as an online pre-conditioning step for a challenging multiclass classification problem of 4-finger activation, using linear discriminant analysis. It is shown that for this application, the proposed IE-HD-EMG technique led to a superior performance in finger activation recognition (79.25% accuracy, 89% sensitivity, 89.15% specificity) in comparison to the conventional HD-EMG recording under the same condition without the proposed approach (56.25% accuracy, 61.3% sensitivity, 67% specificity). Therefore, the proposed technique can have a significant potential to expand the clinical viability of HD-EMG systems.
在神经假体装置的肌电控制中,多通道肌电图(EMG)可用于根据残肢肌肉的分布式激活模式解码预期的运动指令。在这方面,高密度肌电图(HD-EMG)方法可提高运动意图检测的时空分辨率。尽管依赖多个EMG通道有诸多优势,但高密度电极系统面临的挑战是电极与皮肤之间的接触阻抗动态变化,这在数据采集过程中可能会影响相当数量的电极。这可能导致获得不可靠、低质量的EMG记录,在EMG传感器网格上呈现分布式伪迹模式。为解决此问题,我们提出一种新颖的在线方法,用于在基于HD-EMG的假肢装置肌电控制中进行自适应信息提取和增强,以实现自动伪迹检测和衰减。该方法基于一种自适应加权方案,该方案根据相对于伪迹的频谱信息内容修改每个HD-EMG通道的贡献。该技术(命名为IE-HD-EMG)作为在线预处理步骤,用于具有挑战性的四指激活多类分类问题,并使用线性判别分析进行了测试。结果表明,对于此应用,与在相同条件下未采用该方法的传统HD-EMG记录相比(准确率56.25%、灵敏度61.3%、特异性67%),所提出的IE-HD-EMG技术在手指激活识别方面具有卓越性能(准确率79.25%、灵敏度89%、特异性89.15%)。因此,所提出的技术在扩大HD-EMG系统的临床可行性方面具有巨大潜力。