Suppr超能文献

高密度肌电图阵列测量中低质量通道的检测与重建。

Detection and Reconstruction of Poor-Quality Channels in High-Density EMG Array Measurements.

机构信息

Department of Systems and Computer Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada.

出版信息

Sensors (Basel). 2023 May 15;23(10):4759. doi: 10.3390/s23104759.

Abstract

High-density electromyography (HD-EMG) arrays allow for the study of muscle activity in both time and space by recording electrical potentials produced by muscle contractions. HD-EMG array measurements are susceptible to noise and artifacts and frequently contain some poor-quality channels. This paper proposes an interpolation-based method for the detection and reconstruction of poor-quality channels in HD-EMG arrays. The proposed detection method identified artificially contaminated channels of HD-EMG for signal-to-noise ratio (SNR) levels 0 dB and lower with ≥99.9% precision and ≥97.6% recall. The interpolation-based detection method had the best overall performance compared with two other rule-based methods that used the root mean square (RMS) and normalized mutual information (NMI) to detect poor-quality channels in HD-EMG data. Unlike other detection methods, the interpolation-based method evaluated channel quality in a localized context in the HD-EMG array. For a single poor-quality channel with an SNR of 0 dB, the F1 scores for the interpolation-based, RMS, and NMI methods were 99.1%, 39.7%, and 75.9%, respectively. The interpolation-based method was also the most effective detection method for identifying poor channels in samples of real HD-EMG data. F1 scores for the detection of poor-quality channels in real data for the interpolation-based, RMS, and NMI methods were 96.4%, 64.5%, and 50.0%, respectively. Following the detection of poor-quality channels, 2D spline interpolation was used to successfully reconstruct these channels. Reconstruction of known target channels had a percent residual difference (PRD) of 15.5 ± 12.1%. The proposed interpolation-based method is an effective approach for the detection and reconstruction of poor-quality channels in HD-EMG.

摘要

高密度肌电图(HD-EMG)阵列通过记录肌肉收缩产生的电潜力,允许在时间和空间上研究肌肉活动。HD-EMG 阵列测量易受噪声和伪影的影响,并且经常包含一些质量较差的通道。本文提出了一种基于插值的方法,用于检测和重建 HD-EMG 阵列中的质量较差的通道。所提出的检测方法以≥99.9%的精度和≥97.6%的召回率识别 HD-EMG 中人为污染的 SNR 水平为 0 dB 及以下的通道。与使用均方根(RMS)和归一化互信息(NMI)检测 HD-EMG 数据中质量较差的通道的两种其他基于规则的方法相比,基于插值的检测方法具有最佳的整体性能。与其他检测方法不同,基于插值的方法在 HD-EMG 阵列的局部环境中评估通道质量。对于 SNR 为 0 dB 的单个质量较差的通道,基于插值、RMS 和 NMI 的方法的 F1 分数分别为 99.1%、39.7%和 75.9%。基于插值的方法也是识别真实 HD-EMG 数据样本中质量较差通道的最有效检测方法。基于插值、RMS 和 NMI 的方法在真实数据中检测质量较差通道的 F1 分数分别为 96.4%、64.5%和 50.0%。在检测到质量较差的通道后,使用 2D 样条插值成功重建这些通道。已知目标通道的重建百分比残留差异(PRD)为 15.5±12.1%。所提出的基于插值的方法是检测和重建 HD-EMG 中质量较差通道的有效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9be/10221262/552bf9382665/sensors-23-04759-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验