Suppr超能文献

使用便携式超声成像传感技术在水平、上坡和下坡行走任务中进行步态阶段识别。

Gait Phase Identification During Level, Incline and Decline Ambulation Tasks Using Portable Sonomyographic Sensing.

作者信息

Jahanandish Mohammad Hassan, Rabe Kaitlin G, Fey Nicholas P, Hoyt Kenneth

出版信息

IEEE Int Conf Rehabil Robot. 2019 Jun;2019:988-993. doi: 10.1109/ICORR.2019.8779534.

Abstract

Clinical viability of powered lower-limb assistive devices requires reliable and intuitive control strategies. Stance and swing are the main phases of the gait cycle across different locomotion tasks. Hence, a reliable method to accurately identify these phases can decrease sensing complexity and assist in enabling high-level control of assistive devices. Ultrasound (US) imaging has recently been introduced as a new sensing modality that may provide a solution for intuitive device control. US images of the rectus femoris and vastus intermedius muscles were collected in humans during level, incline, and decline ambulation tasks. Five low-level static (i.e. time-independent) features of US images were measured with respect to a reference image, including correlation coefficient, sum of absolute differences, structural similarity index, sum of squared differences, and image echogenicity. Time-derivatives of the static features were also calculated as temporal features. Support vector machine classifiers were trained using these static features to identify the gait phase both dependent and independent of the ambulation tasks. The results indicate an accuracy of 88.3% in identifying the gait phases for task-independent classifiers when trained using only the static features. Performance of the classifiers improved significantly to 92.8% after using the temporal features (p $\lt0.01)$. The algorithm was efficient and the average processing speed was faster than 100 Hz. This study is the first demonstration on use of US imaging to provide continuous estimates of ambulation phase, and on multiple surfaces. These findings suggest task-independent approaches may reliably identify the main phases of the gait cycle. Advancements in this area of study may provide simpler intuitive strategies for high-level assistive device control and increase their clinical relevance.

摘要

电动下肢辅助设备的临床可行性需要可靠且直观的控制策略。站立和摆动是不同行走任务中步态周期的主要阶段。因此,一种准确识别这些阶段的可靠方法可以降低传感复杂性,并有助于实现辅助设备的高级控制。超声(US)成像最近作为一种新的传感方式被引入,它可能为直观的设备控制提供解决方案。在水平、上坡和下坡行走任务中收集了人体股直肌和股中间肌的超声图像。相对于参考图像测量了超声图像的五个低级静态(即与时间无关)特征,包括相关系数、绝对差之和、结构相似性指数、平方差之和以及图像回声性。还计算了静态特征的时间导数作为时间特征。使用这些静态特征训练支持向量机分类器,以识别与行走任务相关和无关的步态阶段。结果表明,仅使用静态特征训练时,任务无关分类器识别步态阶段的准确率为88.3%。使用时间特征后,分类器的性能显著提高到92.8%(p< 0.01)。该算法效率高,平均处理速度超过100 Hz。本研究首次展示了使用超声成像在多个表面上提供行走阶段的连续估计。这些发现表明,任务无关方法可能可靠地识别步态周期的主要阶段。这一研究领域的进展可能为高级辅助设备控制提供更简单直观的策略,并增加其临床相关性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验