Suppr超能文献

使用BIANCA进行自动病变分割:人群水平特征、分类算法和局部自适应阈值处理的影响

Automated lesion segmentation with BIANCA: Impact of population-level features, classification algorithm and locally adaptive thresholding.

作者信息

Sundaresan Vaanathi, Zamboni Giovanna, Le Heron Campbell, Rothwell Peter M, Husain Masud, Battaglini Marco, De Stefano Nicola, Jenkinson Mark, Griffanti Ludovica

机构信息

Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, UK; Oxford-Nottingham Centre for Doctoral Training in Biomedical Imaging, University of Oxford, UK; Oxford India Centre for Sustainable Development, Somerville College, University of Oxford, UK.

Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, UK; Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, UK.

出版信息

Neuroimage. 2019 Nov 15;202:116056. doi: 10.1016/j.neuroimage.2019.116056. Epub 2019 Jul 31.

Abstract

White matter hyperintensities (WMH) or white matter lesions exhibit high variability in their characteristics both at population- and subject-level, making their detection a challenging task. Population-level factors such as age, vascular risk factors and neurodegenerative diseases affect lesion load and spatial distribution. At the individual level, WMH vary in contrast, amount and distribution in different white matter regions. In this work, we aimed to improve BIANCA, the FSL tool for WMH segmentation, in order to better deal with these sources of variability. We worked on two stages of BIANCA by improving the lesion probability map estimation (classification stage) and making the lesion probability map thresholding stage automated and adaptive to local lesion probabilities. Firstly, in order to take into account the effect of population-level factors, we included population-level lesion probabilities, modelled with respect to a parametric factor (e.g. age), in the classification stage. Secondly, we tested BIANCA performance when using four alternative classifiers commonly used in the literature with respect to K-nearest neighbour algorithm (currently used for lesion probability map estimation in BIANCA). Finally, we propose LOCally Adaptive Threshold Estimation (LOCATE), a supervised method for determining optimal local thresholds to apply to the estimated lesion probability map, as an alternative option to global thresholding (i.e. applying the same threshold to the entire lesion probability map). For these experiments we used data from a neurodegenerative cohort, a vascular cohort and the cohorts available publicly as a part of a segmentation challenge. We observed that including population-level parametric lesion probabilities with respect to age and using alternative machine learning techniques provided negligible improvement. However, LOCATE provided a substantial improvement in the lesion segmentation performance, when compared to the global thresholding. It allowed to detect more deep lesions and provided better segmentation of periventricular lesion boundaries, despite the differences in the lesion spatial distribution and load across datasets. We further validated LOCATE on a cohort of CADASIL (Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy) patients, a genetic form of cerebral small vessel disease, and healthy controls, showing that LOCATE adapts well to wide variations in lesion load and spatial distribution.

摘要

白质高信号(WMH)或白质病变在人群水平和个体水平上的特征都表现出高度变异性,这使得它们的检测成为一项具有挑战性的任务。年龄、血管危险因素和神经退行性疾病等人群水平因素会影响病变负荷和空间分布。在个体水平上,WMH在不同白质区域的对比度、数量和分布各不相同。在这项工作中,我们旨在改进用于WMH分割的FSL工具BIANCA,以便更好地应对这些变异性来源。我们通过改进病变概率图估计(分类阶段)并使病变概率图阈值化阶段自动化并适应局部病变概率,对BIANCA的两个阶段进行了改进。首先,为了考虑人群水平因素的影响,我们在分类阶段纳入了相对于参数因子(如年龄)建模的人群水平病变概率。其次,我们测试了在使用文献中常用的四种替代分类器相对于K近邻算法(目前用于BIANCA中的病变概率图估计)时BIANCA的性能。最后,我们提出了局部自适应阈值估计(LOCATE),这是一种用于确定应用于估计病变概率图的最佳局部阈值的监督方法,作为全局阈值化(即对整个病变概率图应用相同阈值)的替代选项。对于这些实验,我们使用了来自神经退行性队列、血管队列以及作为分割挑战一部分公开可用的队列的数据。我们观察到纳入相对于年龄的人群水平参数病变概率并使用替代机器学习技术带来的改进微不足道。然而,与全局阈值化相比,LOCATE在病变分割性能上有显著提高。尽管不同数据集中病变的空间分布和负荷存在差异,但它能够检测到更多深部病变,并能更好地分割脑室周围病变边界。我们进一步在一组患有常染色体显性遗传性脑动脉病伴皮质下梗死和白质脑病(CADASIL)的患者(一种遗传性脑小血管疾病形式)以及健康对照中验证了LOCATE,表明LOCATE能很好地适应病变负荷和空间分布的广泛变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e9b/6996003/b6d952bb196f/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验