Suppr超能文献

适量的混沌:利用分形框架工程更高保真度的生物医学系统。

A healthy dose of chaos: Using fractal frameworks for engineering higher-fidelity biomedical systems.

机构信息

Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada.

Department of Statistical Science, Duke University, Durham, NC, USA; Department of Mathematics, Duke University, Durham, NC, USA; Mathematics Division, National Center for Theoretical Sciences, Taipei, Taiwan.

出版信息

Biomaterials. 2019 Oct;219:119363. doi: 10.1016/j.biomaterials.2019.119363. Epub 2019 Jul 15.

Abstract

Optimal levels of chaos and fractality are distinctly associated with physiological health and function in natural systems. Chaos is a type of nonlinear dynamics that tends to exhibit seemingly random structures, whereas fractality is a measure of the extent of organization underlying such structures. Growing bodies of work are demonstrating both the importance of chaotic dynamics for proper function of natural systems, as well as the suitability of fractal mathematics for characterizing these systems. Here, we review how measures of fractality that quantify the dose of chaos may reflect the state of health across various biological systems, including: brain, skeletal muscle, eyes and vision, lungs, kidneys, tumours, cell regulation, skin and wound repair, bone, vasculature, and the heart. We compare how reports of either too little or too much chaos and fractal complexity can be damaging to normal biological function, and suggest that aiming for the healthy dose of chaos may be an effective strategy for various biomedical applications. We also discuss rising examples of the implementation of fractal theory in designing novel materials, biomedical devices, diagnostics, and clinical therapies. Finally, we explain important mathematical concepts of fractals and chaos, such as fractal dimension, criticality, bifurcation, and iteration, and how they are related to biology. Overall, we promote the effectiveness of fractals in characterizing natural systems, and suggest moving towards using fractal frameworks as a basis for the research and development of better tools for the future of biomedical engineering.

摘要

混沌和分形的最佳水平与自然系统的生理健康和功能明显相关。混沌是一种非线性动力学,往往表现出看似随机的结构,而分形是衡量这些结构背后组织程度的一种度量。越来越多的研究表明,混沌动力学对于自然系统的正常功能非常重要,而分形数学对于描述这些系统也非常适用。在这里,我们回顾了分形度的度量方法,这些方法可以反映各种生物系统的健康状况,包括:大脑、骨骼肌、眼睛和视力、肺、肾脏、肿瘤、细胞调节、皮肤和伤口修复、骨骼、脉管系统和心脏。我们比较了报告中太少或太多的混沌和分形复杂性如何对正常的生物功能造成损害,并提出了在各种生物医学应用中追求健康剂量的混沌可能是一种有效的策略。我们还讨论了分形理论在设计新型材料、生物医学设备、诊断和临床治疗方面的应用实例不断增加。最后,我们解释了分形和混沌的重要数学概念,如分形维数、临界性、分叉和迭代,以及它们与生物学的关系。总的来说,我们提倡分形在描述自然系统方面的有效性,并建议将分形框架作为未来生物医学工程研究和开发更好工具的基础。

相似文献

1
A healthy dose of chaos: Using fractal frameworks for engineering higher-fidelity biomedical systems.
Biomaterials. 2019 Oct;219:119363. doi: 10.1016/j.biomaterials.2019.119363. Epub 2019 Jul 15.
2
[Chaos and fractals and their applications in electrocardial signal research].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2009 Jun;26(3):676-80.
4
5
Fractality and a wavelet-chaos-neural network methodology for EEG-based diagnosis of autistic spectrum disorder.
J Clin Neurophysiol. 2010 Oct;27(5):328-33. doi: 10.1097/WNP.0b013e3181f40dc8.
6
[Chaos and fractals. Are these of interest to medical science?].
Tidsskr Nor Laegeforen. 1993 Dec 10;113(30):3678-85.
7
Chaos theory: the transforming role of functional systems.
Ross Fiziol Zh Im I M Sechenova. 1997 May-Jun;83(5-6):190-216.
8
Chaos, fractals, and our concept of disease.
Perspect Biol Med. 2010 Autumn;53(4):584-95. doi: 10.1353/pbm.2010.0003.
9
Facilitating joint chaos and fractal analysis of biosignals through nonlinear adaptive filtering.
PLoS One. 2011;6(9):e24331. doi: 10.1371/journal.pone.0024331. Epub 2011 Sep 6.
10
Chaos and physiology: deterministic chaos in excitable cell assemblies.
Physiol Rev. 1994 Jan;74(1):1-47. doi: 10.1152/physrev.1994.74.1.1.

引用本文的文献

1
Principles Entailed by Complexity, Crucial Events, and Multifractal Dimensionality.
Entropy (Basel). 2025 Feb 26;27(3):241. doi: 10.3390/e27030241.
2
A novel chaotic system with one absolute term: stability, ultimate boundedness, and image encryption.
Heliyon. 2024 Sep 3;11(1):e37239. doi: 10.1016/j.heliyon.2024.e37239. eCollection 2025 Jan 15.
3
Symmetry and asymmetry in atherosclerosis.
Int J Occup Med Environ Health. 2023 Dec 15;36(6):693-703. doi: 10.13075/ijomeh.1896.02171. Epub 2023 Oct 2.
4
The Fractal Viewpoint of Tumors and Nanoparticles.
Curr Med Chem. 2023;30(3):356-370. doi: 10.2174/0929867329666220801152347.
5
Control and Anticontrol of chaos in Fractional-order models of Diabetes, HIV, Dengue, Migraine, Parkinson's and Ebola Virus diseases.
Chaos Solitons Fractals. 2021 Dec;153(Pt 1). doi: 10.1016/j.chaos.2021.111419. Epub 2021 Oct 12.
6
Myotendinous Junction: Exercise Protocols Can Positively Influence Their Development in Rats.
Biomedicines. 2022 Feb 18;10(2):480. doi: 10.3390/biomedicines10020480.
7
Fractal Design Boosts Extrusion-Based 3D Printing of Bone-Mimicking Radial-Gradient Scaffolds.
Research (Wash D C). 2021 Nov 23;2021:9892689. doi: 10.34133/2021/9892689. eCollection 2021.
8
Fractal analysis of rat dermal tissue in the different injury states.
Int Wound J. 2022 Aug;19(5):1016-1022. doi: 10.1111/iwj.13698. Epub 2021 Oct 7.
10
Controlling chaos by the system size.
Sci Rep. 2021 Apr 22;11(1):8703. doi: 10.1038/s41598-021-87233-8.

本文引用的文献

1
Design and 3D Printing of Hydrogel Scaffolds with Fractal Geometries.
ACS Biomater Sci Eng. 2016 Oct 10;2(10):1763-1770. doi: 10.1021/acsbiomaterials.6b00140. Epub 2016 Jun 2.
2
Self-assembling oxidized silk fibroin nanofibrils with controllable fractal dimensions.
J Mater Chem B. 2018 Jul 28;6(28):4656-4664. doi: 10.1039/c8tb00567b. Epub 2018 Jul 2.
3
Self-assembly of fractal liquid crystal colloids.
Nat Commun. 2019 Jan 14;10(1):198. doi: 10.1038/s41467-018-08210-w.
4
Noninvasive diagnostic imaging using machine-learning analysis of nanoresolution images of cell surfaces: Detection of bladder cancer.
Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):12920-12925. doi: 10.1073/pnas.1816459115. Epub 2018 Dec 3.
8
Circadian Rhythms in Fractal Features of EEG Signals.
Front Physiol. 2018 Nov 12;9:1567. doi: 10.3389/fphys.2018.01567. eCollection 2018.
9
Injectable tissue integrating networks from recombinant polypeptides with tunable order.
Nat Mater. 2018 Dec;17(12):1154-1163. doi: 10.1038/s41563-018-0182-6. Epub 2018 Oct 15.
10
Curvature facilitates podocyte culture in a biomimetic platform.
Lab Chip. 2018 Oct 9;18(20):3112-3128. doi: 10.1039/c8lc00495a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验