Suppr超能文献

二氧化硅纳米颗粒可改善酸性土壤上玉米对铝的植物毒性危害。

Silicon dioxide nanoparticles ameliorate the phytotoxic hazards of aluminum in maize grown on acidic soil.

机构信息

GreenUPorto - Sustainable Agrifood Production Research Center, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium.

Biology Department, Faculty of Science at Yanbu, Taibah University, King Khalid Rd., Al Amoedi, 46423 Yanbu El-Bahr, Saudi Arabia; Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt.

出版信息

Sci Total Environ. 2019 Nov 25;693:133636. doi: 10.1016/j.scitotenv.2019.133636. Epub 2019 Jul 27.

Abstract

Aluminum (Al) toxicity is a major constraint for crop production in acid soils. Therefore, looking for sustainable solutions to increase plant tolerance to Al toxicity is needed. Although several studies addressed the potential utilization of silica or silicon dioxide nanoparticles (SNPs) to ameliorate heavy metal phytotoxicity, the exact mechanisms underlying SNPs-induced stress tolerance are still unknown. The current study investigated how SNPs could mitigate Al toxicity in maize plants grown on acidic soil. The impact of Al alone or in combination with SNPs on Al accumulation and detoxification, plant growth, photosynthetic C assimilation and redox homeostasis has been investigated. Al accumulation in stressed-maize organs reduced their growth, decreased photosynthesis related parameters and increased production of reactive oxygen species, through induced NADPH oxidase and photorespiration activities, and cell damage. These effects were more pronounced in roots than in leaves. SNPs ameliorated Al toxicity at growth, physiological and oxidative damage levels. Co-application of SNPs significantly reduced the activities of the photorespiratory enzymes and NADPH oxidase. It stimulated the antioxidant defense systems at enzymatic (superoxide dismutase, catalase, ascorbate and glutathione peroxidases) and non-enzymatic (ascorbate, glutathione, polyphenols, flavonoids, tocopherols, and FRAP) levels. Moreover, SNPs increased organic acids accumulation and metal detoxification (i.e. glutathione-S-transferase activity) in roots, as a protective mechanism against Al toxicity. The SNPs induced-protective mechanisms was dependent on the applied Al concentration and acted in organ-specific manner. Overall, the current study suggests the promising application of SNPs as an innovative approach to mitigate Al phytotoxicity in acidic soils and provides a comprehensive view of the cellular and biochemical mechanisms underlying this mitigation capacity.

摘要

铝(Al)毒性是酸性土壤中作物生产的主要限制因素。因此,需要寻找可持续的解决方案来提高植物对 Al 毒性的耐受性。尽管有几项研究探讨了利用硅或二氧化硅纳米粒子(SNPs)来减轻重金属植物毒性的潜力,但 SNPs 诱导胁迫耐受性的确切机制仍不清楚。本研究探讨了 SNPs 如何减轻酸性土壤中玉米植株的 Al 毒性。研究了单独 Al 或与 SNPs 联合处理对 Al 积累和解毒、植物生长、光合 C 同化和氧化还原稳态的影响。胁迫玉米器官中的 Al 积累会降低其生长,降低与光合作用相关的参数,并通过诱导 NADPH 氧化酶和光呼吸活性以及细胞损伤增加活性氧的产生。这些影响在根部比在叶片中更为明显。SNPs 在生长、生理和氧化损伤水平上缓解了 Al 毒性。SNPs 的共同应用显著降低了光呼吸酶和 NADPH 氧化酶的活性。它刺激了抗氧化防御系统的酶(超氧化物歧化酶、过氧化氢酶、抗坏血酸和谷胱甘肽过氧化物酶)和非酶(抗坏血酸、谷胱甘肽、多酚、类黄酮、生育酚和 FRAP)水平。此外,SNPs 增加了根中的有机酸积累和金属解毒(即谷胱甘肽-S-转移酶活性),作为一种针对 Al 毒性的保护机制。SNPs 诱导的保护机制取决于所施加的 Al 浓度,并以器官特异性的方式发挥作用。总的来说,本研究表明 SNPs 作为一种减轻酸性土壤中 Al 植物毒性的创新方法具有广阔的应用前景,并提供了这种缓解能力的细胞和生化机制的综合视图。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验