Miao Guopeng, Han Juan, Han Taotao
Department of Bioengineering, Huainan Normal University, Huainan 232038, China.
Key Laboratory of Bioresource and Environmental Biotechnology, Anhui Higher Education Institutes, Huainan Normal University, Huainan 232038, China.
Plants (Basel). 2025 May 27;14(11):1630. doi: 10.3390/plants14111630.
Silicon nanoparticles (SiNPs) have emerged as multifunctional tools in sustainable agriculture, demonstrating significant efficacy in promoting crop growth and enhancing plant resilience against diverse biotic and abiotic stresses. Although their ability to strengthen antioxidant defense systems and activate systemic immune responses is well documented, the fundamental mechanisms driving these benefits remain unclear. This review synthesizes emerging evidence to propose an innovative paradigm: SiNPs remodel plant redox signaling networks and stress adaptation mechanisms by forming protein coronas through apoplastic protein adsorption. We hypothesize that extracellular SiNPs may elevate apoplastic reactive oxygen species (ROS) levels by adsorbing and inhibiting antioxidant enzymes, thereby enhancing intracellular redox buffering capacity and activating salicylic acid (SA)-dependent defense pathways. Conversely, smaller SiNPs infiltrating symplastic compartments risk oxidative damage due to direct suppression of cytoplasmic antioxidant systems. Additionally, SiNPs may indirectly influence heavy metal transporter activity through redox state regulation and broadly modulate plant physiological functions via transcription factor regulatory networks. Critical knowledge gaps persist regarding the dynamic composition of protein coronas under varying environmental conditions and their transgenerational impacts. By integrating existing mechanisms of SiNPs, this review provides insights and potential strategies for developing novel agrochemicals and stress-resistant crops.
硅纳米颗粒(SiNPs)已成为可持续农业中的多功能工具,在促进作物生长和增强植物对各种生物和非生物胁迫的抵御能力方面显示出显著功效。尽管其增强抗氧化防御系统和激活系统免疫反应的能力已有充分记录,但驱动这些益处的基本机制仍不清楚。本综述综合了新出现的证据,提出了一种创新范式:SiNPs通过质外体蛋白吸附形成蛋白质冠层,重塑植物氧化还原信号网络和胁迫适应机制。我们假设细胞外SiNPs可能通过吸附和抑制抗氧化酶来提高质外体活性氧(ROS)水平,从而增强细胞内氧化还原缓冲能力并激活水杨酸(SA)依赖性防御途径。相反,较小的SiNPs渗入共质体区室会因直接抑制细胞质抗氧化系统而有氧化损伤的风险。此外,SiNPs可能通过氧化还原状态调节间接影响重金属转运蛋白活性,并通过转录因子调控网络广泛调节植物生理功能。关于不同环境条件下蛋白质冠层的动态组成及其跨代影响,仍存在关键的知识空白。通过整合SiNPs的现有机制,本综述为开发新型农用化学品和抗逆作物提供了见解和潜在策略。