Kreckel H, Novotný O, Wolf A
Max Planck Institut für Kernphysik, 69117 Heidelberg, Germany.
Philos Trans A Math Phys Eng Sci. 2019 Sep 23;377(2154):20180412. doi: 10.1098/rsta.2018.0412. Epub 2019 Aug 5.
The new Cryogenic Storage Ring at the Max Planck Institute for Nuclear Physics (Heidelberg, Germany) has recently become operational. One of the main research areas foreseen for this unique facility is astrochemical studies with cold molecular ions. The spontaneous radiative cooling of the prototype interstellar molecule CH to its lowest rotational states has been demonstrated by photodissociation spectroscopy, paving the way for experiments under true interstellar conditions. To this end, a low-energy electron cooler and a neutral atom beam set-up for merged beams studies have been constructed. These experiments have the potential to provide energy-resolved rate coefficients for fundamental astrochemical processes involving state-selected molecular ions. The main target reactions include some of the key processes of interstellar chemistry, such as the electron recombination of H, charge exchange between H and H, or the formation of CH in collisions of triatomic hydrogen ions and C atoms. This article is part of a discussion meeting issue 'Advances in hydrogen molecular ions: H, H and beyond'.
德国海德堡的马克斯·普朗克核物理研究所的新型低温储存环最近开始运行。这个独特设施预计的主要研究领域之一是利用冷分子离子进行天体化学研究。通过光解离光谱法已经证明了星际分子原型CH自发辐射冷却到其最低转动能级,为在真实星际条件下进行实验铺平了道路。为此,建造了一个低能电子冷却器和一个用于合并束研究的中性原子束装置。这些实验有可能为涉及态选分子离子的基本天体化学过程提供能量分辨速率系数。主要目标反应包括星际化学的一些关键过程,如H的电子复合、H与H之间的电荷交换,或三原子氢离子与C原子碰撞中CH的形成。本文是“氢分子离子的进展:H、H及其他”讨论会议文集的一部分。