Suppr超能文献

氢的氘代形式及其在天体化学中的重要性。

Deuterated forms of H and their importance in astrochemistry.

作者信息

Caselli P, Sipilä O, Harju J

机构信息

Max Planck Institut für Extraterrestrische Physik, Gießenbachstrasse 1, 85741 Garching bei München, Germany.

Department of Physics, University of Helsinki, PO BOX 64, 00014 Helsinki, Finland.

出版信息

Philos Trans A Math Phys Eng Sci. 2019 Sep 23;377(2154):20180401. doi: 10.1098/rsta.2018.0401. Epub 2019 Aug 5.

Abstract

At the low temperatures (approx. 10 K) and high densities (approx. 100 000 H molecules per cm) of molecular cloud cores and protostellar envelopes, a large amount of molecular species (in particular those containing C and O) freeze-out onto dust grain surfaces. It is in these regions that the deuteration of H becomes very efficient, with a sharp abundance increase of HD and DH. The multi-deuterated forms of H participate in an active chemistry: (i) their collision with neutral species produces deuterated molecules such as the commonly observed ND, DCO and multi-deuterated NH; (ii) their dissociative electronic recombination increases the D/H atomic ratio by several orders of magnitude above the D cosmic abundance, thus allowing deuteration of molecules (e.g. CHOH and HO) on the surface of dust grains. Deuterated molecules are the main diagnostic tools of dense and cold interstellar clouds, where the first steps toward star and protoplanetary disc formation take place. Recent observations of deuterated molecules are reviewed and discussed in view of astrochemical models inclusive of spin-state chemistry. We present a new comparison between models based on complete scrambling (to calculate branching ratio tables for reactions between chemical species that include protons and/or deuterons) and models based on non-scrambling (proton hop) methods, showing that the latter best agree with observations of NH deuterated isotopologues and their different nuclear spin symmetry states. This article is part of a discussion meeting issue 'Advances in hydrogen molecular ions: H, H and beyond'.

摘要

在分子云核和原恒星包层的低温(约10 K)和高密度(约每立方厘米100000个氢分子)条件下,大量分子物种(特别是含碳和氧的那些)会冻结在尘埃颗粒表面。正是在这些区域,氢的氘化变得非常高效,HD和DH的丰度急剧增加。氢的多重氘化形式参与了活跃的化学过程:(i)它们与中性物种的碰撞产生氘化分子,如常见的ND、DCO和多重氘化的NH;(ii)它们的离解电子复合使D/H原子比在宇宙D丰度之上提高几个数量级,从而使得尘埃颗粒表面的分子(如CHOH和HO)发生氘化。氘化分子是致密寒冷星际云的主要诊断工具,恒星和原行星盘形成的最初步骤就在这些星际云中发生。鉴于包括自旋态化学在内的天体化学模型,对氘化分子的最新观测进行了综述和讨论。我们对基于完全重排(计算包括质子和/或氘核的化学物种之间反应的分支比表)的模型和基于非重排(质子跳跃)方法的模型进行了新的比较,结果表明后者与NH氘化同位素及其不同核自旋对称态的观测结果最为吻合。本文是“氢分子离子的进展:H₂⁺、H₃⁺及其他”讨论会议文集的一部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验