Suppr超能文献

人工智能在急性心肌炎患者心脏磁共振电影成像中早期钆增强(EGE)和心功能参数评估:一项病例对照观察研究。

Evaluation of Early Gadolinium Enhancement (EGE) and Cardiac Functional Parameters in Cine-Magnetic Resonance Imaging (MRI) on Artificial Intelligence in Patients with Acute Myocarditis: A Case-Controlled Observational Study.

机构信息

Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China (mainland).

Department of Radiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland).

出版信息

Med Sci Monit. 2019 Jul 24;25:5493-5500. doi: 10.12659/MSM.916690.

Abstract

BACKGROUND The diagnosis of myocarditis is challenging, and the treatment is generally delayed due to misdiagnosis or missed diagnosis. Endomyocardial biopsy (EMB) is not a specific or sensitive method. A case-controlled observational study was conducted to evaluate early gadolinium enhancement (EGE) and left ventricular functional parameters on Artificial Intelligence in cine-MRI in patients with acute myocarditis. MATERIAL AND METHODS We selected 21 patients with pathologically proven acute myocarditis. We analyzed the EGE findings (total/serial number and location of positive-segments using the 17-segment model according to the American Heart Association) and clinical characteristics (symptoms, arrhythmias in ECG, coronary angiography, and EMB). All patients were divided into positive EGE and negative EGE groups to analyze left ventricular functional parameters (LVEF, FS, LVEDD, LVEDV, LVESV, LVMM, LVSV, CO, and CI) on Artificial Intelligence. RESULTS We enrolled 21 patients (11 males) with a mean age of 32.6±9.8 years (range, 16 to 51 years). Abnormalities on EGE were found in 2/3 of patients, involving 41 segments among multiple locations on the myocardium. The differences in LVEF (40.2±10.2% 51.3±3.6%), LVESV (69.0±16.1ml 52.5±10.6ml) and LVSV (42.6±11.4 52.8±2.8 ml) on Artificial Intelligence was statistically significant between the positive EGE and negative EGE groups (p<0.05). CONCLUSIONS Our results suggest a significant role of EGE on the basis of Lake Louise criteria in evaluating patients with clinical suspicion of acute myocarditis. Parameters, including LVEF, LVESV, and LVSV, on Artificial Intelligence, may be useful independent predictors for capillary leakage and microcirculatory disturbance in myocarditis.

摘要

背景:心肌炎的诊断具有挑战性,由于误诊或漏诊,治疗通常会延迟。心内膜心肌活检(EMB)不是一种特异性或敏感性方法。我们进行了一项病例对照观察性研究,以评估人工智能在 cine-MRI 中对急性心肌炎患者的早期钆增强(EGE)和左心室功能参数的作用。

材料与方法:我们选择了 21 例经病理证实的急性心肌炎患者。我们分析了 EGE 发现(根据美国心脏协会的 17 节段模型,总/节段数和阳性节段的位置)和临床特征(症状、心电图心律失常、冠状动脉造影和 EMB)。所有患者均分为 EGE 阳性和 EGE 阴性组,以分析人工智能上的左心室功能参数(LVEF、FS、LVEDD、LVEDV、LVESV、LVMM、LVSV、CO 和 CI)。

结果:我们共纳入 21 例患者(男性 11 例),平均年龄 32.6±9.8 岁(范围 16-51 岁)。三分之二的患者 EGE 异常,涉及心肌多个部位的 41 个节段。人工智能上 EGE 阳性组和 EGE 阴性组的 LVEF(40.2±10.2%比 51.3±3.6%)、LVESV(69.0±16.1ml 比 52.5±10.6ml)和 LVSV(42.6±11.4 比 52.8±2.8ml)差异有统计学意义(p<0.05)。

结论:根据湖景标准,我们的结果表明 EGE 在评估临床疑似急性心肌炎患者方面具有重要作用。人工智能上的参数,包括 LVEF、LVESV 和 LVSV,可能是心肌炎毛细血管渗漏和微循环障碍的有用独立预测指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8ae/6671557/9ddc64c00556/medscimonit-25-5493-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验