Suppr超能文献

生物学与病理生物学的可切换硝基蛋白质组状态

Switchable Nitroproteome States of Biology and Pathobiology.

作者信息

Izbiańska Karolina, Floryszak-Wieczorek Jolanta, Gajewska Joanna, Gzyl Jarosław, Jelonek Tomasz, Arasimowicz-Jelonek Magdalena

机构信息

Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland.

Department of Plant Physiology, Faculty of Horticulture and Landscape Architecture, Poznań University of Life Sciences, Poznań, Poland.

出版信息

Front Microbiol. 2019 Jul 16;10:1516. doi: 10.3389/fmicb.2019.01516. eCollection 2019.

Abstract

The study demonstrates protein tyrosine nitration as a functional post-translational modification (PTM) in biology and pathobiology of the oomycete (Mont.) de Bary, the most harmful pathogen of potato ( L.). Using two isolates differing in their virulence toward potato cv. Sarpo Mira we found that the pathogen generates reactive nitrogen species (RNS) in hyphae and mature sporangia growing under and conditions. However, acceleration of peroxynitrite formation and elevation of the nitrated protein pool within pathogen structures were observed mainly during the MP 946-potato interaction. Importantly, the nitroproteome profiles varied for the pathogen virulence pattern and comparative analysis revealed that MP 977 represented a much more diverse quality spectrum of nitrated proteins. Abundance profiles of nitrated proteins that were up- or downregulated were substantially different also between the analyzed growth phases. Briefly, growth of and was accompanied by exclusive nitration of proteins involved in energy metabolism, signal transduction and pathogenesis. Importantly, the potato interaction indicated cytosolic RXLRs and Crinklers effectors as potential sensors of RNS. Taken together, we explored the first plant pathogen nitroproteome. The results present new insights into RNS metabolism in indicating protein nitration as an integral part of pathogen biology, dynamically modified during its offensive strategy. Thus, the nitroproteome should be considered as a flexible element of the oomycete developmental and adaptive mechanism to different micro-environments, including host cells.

摘要

该研究表明,蛋白质酪氨酸硝化是卵菌纲(Mont.)德巴里(马铃薯(L.)最有害的病原体)生物学和病理生物学中的一种功能性翻译后修饰(PTM)。使用对马铃薯品种Sarpo Mira毒力不同的两个分离株,我们发现病原体在低磷和高磷条件下生长的菌丝和成熟孢子囊中产生活性氮物质(RNS)。然而,主要在MP 946与马铃薯的相互作用过程中,观察到病原体结构内过氧亚硝酸盐形成加速和硝化蛋白质库增加。重要的是,硝基蛋白质组图谱因病原体毒力模式而异,比较分析表明,MP 977代表了一种更加多样化的硝化蛋白质质量谱。在分析的生长阶段之间,上调或下调的硝化蛋白质丰度谱也有很大差异。简而言之,低磷和高磷条件下的生长伴随着参与能量代谢、信号转导和致病过程的蛋白质的特异性硝化。重要的是,与马铃薯的相互作用表明胞质RXLRs和卷曲效应蛋白是RNS的潜在传感器。综上所述,我们探索了首个植物病原体硝基蛋白质组。研究结果为卵菌纲中的RNS代谢提供了新见解,表明蛋白质硝化是病原体生物学的一个组成部分,在其进攻策略中会动态变化。因此,硝基蛋白质组应被视为卵菌纲发育和适应不同微环境(包括宿主细胞)机制的一个灵活要素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9cb/6647872/e29cd8590b80/fmicb-10-01516-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验