Alves Ricardo J Eloy, Kerou Melina, Zappe Anna, Bittner Romana, Abby Sophie S, Schmidt Heiko A, Pfeifer Kevin, Schleper Christa
Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria.
Max F. Perutz Laboratories, Center for Integrative Bioinformatics Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria.
Front Microbiol. 2019 Jul 17;10:1571. doi: 10.3389/fmicb.2019.01571. eCollection 2019.
Climate change is causing arctic regions to warm disproportionally faster than those at lower latitudes, leading to alterations in carbon and nitrogen cycling, and potentially higher greenhouse gas emissions. It is thus increasingly important to better characterize the microorganisms driving arctic biogeochemical processes and their potential responses to changing conditions. Here, we describe a novel thaumarchaeon enriched from an arctic soil, Nitrosocosmicus arcticus strain Kfb, which has been maintained for seven years in stable laboratory enrichment cultures as an aerobic ammonia oxidizer, with ammonium or urea as substrates. Genomic analyses show that this organism harbors all genes involved in ammonia oxidation and in carbon fixation via the 3-hydroxypropionate/4-hydroxybutyrate cycle, characteristic of all AOA, as well as the capability for urea utilization and potentially also for heterotrophic metabolism, similar to other AOA. . N. arcticus oxidizes ammonia optimally between 20 and 28°C, well above average temperatures in its native high arctic environment (-13-4°C). Ammonia oxidation rates were nevertheless much lower than those of most cultivated mesophilic AOA (20-45°C). Intriguingly, we repeatedly observed apparent faster growth rates (based on marker gene counts) at lower temperatures (4-8°C) but without detectable nitrite production. Together with potential metabolisms predicted from its genome content, these observations indicate that . N. arcticus is not a strict chemolithotrophic ammonia oxidizer and add to cumulating evidence for a greater metabolic and physiological versatility of AOA. The physiology of . N. arcticus suggests that increasing temperatures might drastically affect nitrification in arctic soils by stimulating archaeal ammonia oxidation.
气候变化正导致北极地区变暖的速度比低纬度地区快得多,从而引发碳和氮循环的改变,并可能导致更高的温室气体排放。因此,更好地描述驱动北极生物地球化学过程的微生物及其对不断变化的条件的潜在反应变得越来越重要。在这里,我们描述了一种从北极土壤中富集的新型奇古菌,北极亚硝化宇宙菌菌株Kfb,它作为一种好氧氨氧化菌,以铵或尿素为底物,在稳定的实验室富集培养物中已保存了七年。基因组分析表明,这种生物含有所有参与氨氧化和通过3-羟基丙酸/4-羟基丁酸循环进行碳固定的基因,这是所有氨氧化古菌的特征,同时还具有利用尿素的能力,可能也具有异养代谢能力,与其他氨氧化古菌相似。北极亚硝化宇宙菌在20至28°C之间氨氧化效果最佳,远高于其原生高北极环境的平均温度(-13至4°C)。然而,氨氧化速率远低于大多数培养的嗜温氨氧化古菌(20至45°C)。有趣的是,我们反复观察到在较低温度(4至8°C)下明显更快的生长速率(基于标记基因计数),但没有检测到亚硝酸盐的产生。连同从其基因组内容预测的潜在代谢,这些观察结果表明北极亚硝化宇宙菌不是严格的化能自养氨氧化菌,并进一步证明了氨氧化古菌具有更大的代谢和生理多功能性。北极亚硝化宇宙菌的生理学表明,温度升高可能会通过刺激古菌氨氧化而极大地影响北极土壤中的硝化作用。