Mejia Gerardo, Jara-Servin Angélica, Hernández-Álvarez Cristóbal, Romero-Chora Luis, Peimbert Mariana, Cruz-Ortega Rocío, Alcaraz Luis D
Laboratorio de Genómica Ambiental, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico.
Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico.
FEMS Microbiol Ecol. 2025 Feb 20;101(3). doi: 10.1093/femsec/fiaf019.
Studies have suggested that reduced nutrient availability enhances microbial diversity around plant roots, positively impacting plant productivity. However, the specific contributions of rhizosphere microbiomes in nutrient-poor environments still need to be better understood. This study investigates tomato (Solanum lycopersicum L.) root microbiome under low-nutrient conditions. Plants were grown in hydroponics with soil-derived microbial community inoculations. We hypothesized that nutrient limitation would increase the selection of beneficial bacterial communities, compensating for nutrient deficiencies. We identified 12 294 operational taxonomic units across treatments and controls using 16S rRNA gene sequencing. Increased plant biomass was observed in treatments compared to controls, suggesting a role for the microbiome in mitigating nutrient limitations. The relative abundance of genera such as Luteolibacter and Sphingopyxis relative abundance correlated with plant phenotypic traits (P ≤ .05), and their presence was further validated using shotgun metagenomics. We annotated 722 677 protein families and calculated a core set of 48 116 protein families shared across all treatments and assigned them into bacteria (93.7%) and eukaryota (6.2%). Within the core bacterial metagenome, we identified protein families associated with pathways involved in positive plant interactions like the nitrogen fixation. Limited nutrient availability enhanced plant productivity under controlled conditions, offering a path to reduce fertilizer use in agriculture.
研究表明,养分有效性降低会增强植物根系周围的微生物多样性,对植物生产力产生积极影响。然而,根际微生物群落在养分贫瘠环境中的具体作用仍有待进一步了解。本研究调查了低养分条件下番茄(Solanum lycopersicum L.)的根系微生物群。植物在水培条件下生长,并接种土壤来源的微生物群落。我们假设养分限制会增加对有益细菌群落的选择,以弥补养分不足。我们使用16S rRNA基因测序在处理组和对照组中鉴定出12294个操作分类单元。与对照组相比,处理组中观察到植物生物量增加,这表明微生物群在减轻养分限制方面发挥了作用。诸如黄杆菌属和鞘氨醇单胞菌属等属的相对丰度与植物表型性状相关(P≤0.05),并使用鸟枪法宏基因组学进一步验证了它们的存在。我们注释了722677个蛋白质家族,并计算出所有处理组共有的48116个核心蛋白质家族,并将它们分为细菌(93.7%)和真核生物(6.2%)。在核心细菌宏基因组中,我们鉴定出与参与植物正向相互作用的途径相关的蛋白质家族,如固氮作用。在可控条件下,有限的养分有效性提高了植物生产力,为减少农业化肥使用提供了一条途径。