Suppr超能文献

通过多群体病害筛选和基于图像的表型分析鉴定草莓抗性

Identifying Resistance in Strawberry Through Disease Screening of Multiple Populations and Image Based Phenotyping.

作者信息

Cockerton Helen M, Li Bo, Vickerstaff Robert J, Eyre Catherine A, Sargent Daniel J, Armitage Andrew D, Marina-Montes Cesar, Garcia-Cruz Ana, Passey Andrew J, Simpson David W, Harrison Richard Jonathan

机构信息

NIAB EMR, East Malling, United Kingdom.

Driscoll's Genetics Ltd., East Malling Enterprise Centre, East Malling, United Kingdom.

出版信息

Front Plant Sci. 2019 Jul 18;10:924. doi: 10.3389/fpls.2019.00924. eCollection 2019.

Abstract

is a highly detrimental pathogen of soil cultivated strawberry (). Breeding of Verticillium wilt resistance into commercially viable strawberry cultivars can help mitigate the impact of the disease. In this study we describe novel sources of resistance identified in multiple strawberry populations, creating a wealth of data for breeders to exploit. Pathogen-informed experiments have allowed the differentiation of subclade-specific resistance responses, through studying subclade II-1 specific resistance in the cultivar "Redgauntlet" and subclade II-2 specific resistance in "Fenella" and "Chandler." A large-scale low-cost phenotyping platform was developed utilizing automated unmanned vehicles and near infrared imaging cameras to assess field-based disease trials. The images were used to calculate disease susceptibility for infected plants through the normalized difference vegetation index score. The automated disease scores showed a strong correlation with the manual scores. A co-dominant resistant QTL; , present in both "Redgauntlet" and "Hapil" cultivars exhibited a major effect of 18.3% when the two resistance alleles were combined. Another allele, , identified in the "Emily" cultivar was associated with an increase in Verticillium wilt susceptibility of 17.2%, though whether this allele truly represents a susceptibility factor requires further research, due to the nature of the F1 mapping population. Markers identified in populations were validated across a set of 92 accessions to determine whether they remained closely linked to resistance genes in the wider germplasm. The resistant markers from "Redgauntlet" and from "Chandler" were associated with resistance across the wider germplasm. Furthermore, comparison of imaging versus manual phenotyping revealed the automated platform could identify three out of four disease resistance markers. As such, this automated wilt disease phenotyping platform is considered to be a good, time saving, substitute for manual assessment.

摘要

是土壤栽培草莓的一种极具危害性的病原体()。将抗黄萎病特性培育到具有商业可行性的草莓品种中有助于减轻该病的影响。在本研究中,我们描述了在多个草莓群体中鉴定出的新抗性来源,为育种者提供了丰富的数据以供利用。通过对品种“Redgauntlet”中II - 1亚分支特异性抗性以及“Fenella”和“Chandler”中II - 2亚分支特异性抗性的研究,基于病原体的实验实现了亚分支特异性抗性反应的区分。利用自动无人驾驶车辆和近红外成像相机开发了一个大规模低成本表型分析平台,以评估田间病害试验。通过归一化差异植被指数得分,利用这些图像计算受感染植株的病害易感性。自动病害评分与人工评分显示出很强的相关性。一个共显性抗性QTL;,存在于“Redgauntlet”和“Hapil”品种中,当两个抗性等位基因结合时表现出18.3%的主要效应。在“Emily”品种中鉴定出的另一个等位基因,与黄萎病易感性增加17.2%相关,不过由于F1作图群体的性质,该等位基因是否真的代表一个易感性因子还需要进一步研究。在群体中鉴定出的标记在一组92份种质资源中进行了验证,以确定它们在更广泛的种质中是否仍与抗性基因紧密连锁。来自“Redgauntlet”的抗性标记和来自“Chandler”的标记在更广泛的种质中与抗性相关。此外,成像与人工表型分析的比较表明,自动平台能够识别出四分之三的抗病标记。因此,这个自动枯萎病表型分析平台被认为是一种良好的、节省时间的人工评估替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18a/6657532/78a0441fe624/fpls-10-00924-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验