Suppr超能文献

迈向双手机器人辅助视网膜手术:工具与巩膜的力评估。

Towards Bimanual Robot-Assisted Retinal Surgery: Tool-to-Sclera Force Evaluation.

作者信息

He Changyan, Roizenblatt Marina, Patel Niravkumar, Ebrahimi Ali, Yang Yang, Gehlbach Peter L, Iordachita Iulian

机构信息

LCSR at the Johns Hopkins University, Baltimore, MD 21218 USA.

School of Mechanical Engineering and Automation at Beihang University, Beijing, 100191 China.

出版信息

Proc IEEE Sens. 2018 Oct;2018. doi: 10.1109/ICSENS.2018.8589810. Epub 2018 Dec 27.

Abstract

The performance of retinal microsurgery often requires the coordinated use of both hands. During bimanual retinal surgery, dominant hand performance may be negatively impacted by poor non-dominant hand assistance. Therefore understanding bimanual latent determinants, and establishing safety criteria for bimanual manipulation is relevant to robotic development and to eventual patient care. In this paper, we present a preliminary study to quantitatively evaluate one aspect of bimanual tool use in retinal surgery. Two force sensing tools were designed and fabricated using fiber Bragg grating sensors. Tool-to-sclera contact force is measured using the developed tools and analyzed. The tool forces were recorded during five basic surgical maneuvers typical of retinal surgery. Two subjects are involved in experiments, including one clinician and one engineer. For comparison, all manipulations were replicated under robot-assisted conditions. The results indicate that the average tool-to-sclera force recorded from the dominant hand tool is significantly higher than that from the non-dominant hand tool ( = 0.004). Moreover, the average forces under robot-assisted conditions with the present steady hand robot is notably higher than freehand conditions( = 0.01). The forces obtained from the dominant and not-dominant hand instruments indicate a weak correlation.

摘要

视网膜显微手术的操作通常需要双手协同使用。在双手视网膜手术中,优势手的操作可能会因非优势手辅助不佳而受到负面影响。因此,了解双手操作的潜在决定因素,并建立双手操作的安全标准,对于机器人开发和最终的患者护理都具有重要意义。在本文中,我们进行了一项初步研究,以定量评估视网膜手术中双手使用工具的一个方面。我们使用光纤布拉格光栅传感器设计并制造了两种力传感工具。使用所开发的工具测量并分析工具与巩膜之间的接触力。在视网膜手术典型的五种基本手术操作过程中记录工具力。两名受试者参与了实验,包括一名临床医生和一名工程师。为了进行比较,所有操作都在机器人辅助条件下重复进行。结果表明,优势手工具记录的平均工具与巩膜力明显高于非优势手工具(P = 0.004)。此外,使用当前的稳手机器人在机器人辅助条件下的平均力明显高于徒手条件(P = 0.01)。从优势手和非优势手器械获得的力显示出较弱的相关性。

相似文献

1
Towards Bimanual Robot-Assisted Retinal Surgery: Tool-to-Sclera Force Evaluation.
Proc IEEE Sens. 2018 Oct;2018. doi: 10.1109/ICSENS.2018.8589810. Epub 2018 Dec 27.
2
Towards Bimanual Vein Cannulation: Preliminary Study of a Bimanual Robotic System With a Dual Force Constraint Controller.
IEEE Int Conf Robot Autom. 2020 May-Aug;2020:4441-4447. doi: 10.1109/icra40945.2020.9196889. Epub 2020 Sep 15.
3
Adaptive Control Improves Sclera Force Safety in Robot-Assisted Eye Surgery: A Clinical Study.
IEEE Trans Biomed Eng. 2021 Nov;68(11):3356-3365. doi: 10.1109/TBME.2021.3071135. Epub 2021 Oct 19.
4
FBG-based sensorized light pipe for robotic intraocular illumination facilitates bimanual retinal microsurgery.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:13-6. doi: 10.1109/EMBC.2015.7318249.
5
User Behavior Evaluation in Robot-Assisted Retinal Surgery.
ROMAN. 2018 Aug;2018:174-179. doi: 10.1109/ROMAN.2018.8525638. Epub 2018 Nov 8.
6
Force-based Control for Safe Robot-assisted Retinal Interventions: Evaluation in Animal Studies.
IEEE Trans Med Robot Bionics. 2022 Aug;4(3):578-587. doi: 10.1109/tmrb.2022.3191441. Epub 2022 Jul 15.
7
Enabling Technology for Safe Robot-Assisted Retinal Surgery: Early Warning for Unsafe Scleral Force.
IEEE Int Conf Robot Autom. 2019 May;2019:3889-3894. doi: 10.1109/ICRA.2019.8794427. Epub 2019 Aug 12.
8
Automatic Light Pipe Actuating System for Bimanual Robot-Assisted Retinal Surgery.
IEEE ASME Trans Mechatron. 2020 Dec;25(6):2846-2857. doi: 10.1109/tmech.2020.2996683. Epub 2020 May 22.
10
Real Time Prediction of Sclera Force with LSTM Neural Networks in Robot-Assisted Retinal Surgery.
Achiev Solut Mech Eng II (2019). 2020 Feb;896:183-194. doi: 10.4028/www.scientific.net/AMM.896.183.

引用本文的文献

1
Exploring the Needle Tip Interaction Force with Retinal Tissue Deformation in Vitreoretinal Surgery.
IEEE Int Conf Robot Autom. 2024 May;2024:16999-17005. doi: 10.1109/icra57147.2024.10610807. Epub 2024 Aug 8.
2
Robotic Assistance for Intraocular Microsurgery: Challenges and Perspectives.
Proc IEEE Inst Electr Electron Eng. 2022 Jul;110(7):893-908. doi: 10.1109/JPROC.2022.3169466. Epub 2022 May 9.
3
Force-based Control for Safe Robot-assisted Retinal Interventions: Evaluation in Animal Studies.
IEEE Trans Med Robot Bionics. 2022 Aug;4(3):578-587. doi: 10.1109/tmrb.2022.3191441. Epub 2022 Jul 15.
4
Scleral Force Evaluation During Vitreoretinal Surgery: in an In Vivo Rabbit Eye Model.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:6049-6053. doi: 10.1109/EMBC44109.2020.9176402.
5
Towards securing the sclera against patient involuntary head movement in robotic retinal surgery.
ROMAN. 2019 Oct;2019. doi: 10.1109/ro-man46459.2019.8956341. Epub 2020 Jan 13.
6
Toward Improving Patient Safety and Surgeon Comfort in a Synergic Robot-Assisted Eye Surgery: A Comparative Study.
Rep U S. 2019 Nov;2019:7075-7082. doi: 10.1109/IROS40897.2019.8967806. Epub 2020 Jan 27.
7
Sclera Force Evaluation During Vitreoretinal Surgeries in Ex Vivo Porcine Eye Model.
Proc IEEE Sens. 2019 Oct;2019. doi: 10.1109/SENSORS43011.2019.8956820. Epub 2020 Jan 13.
8
Sclera Force Control in Robot-assisted Eye Surgery: Adaptive Force Control vs. Auditory Feedback.
Int Symp Med Robot. 2019 Apr;2019. doi: 10.1109/ISMR.2019.8710205. Epub 2019 May 9.
9
Adaptive Control of Sclera Force and Insertion Depth for Safe Robot-Assisted Retinal Surgery.
IEEE Int Conf Robot Autom. 2019 May;2019:9073-9079. doi: 10.1109/ICRA.2019.8793658. Epub 2019 Aug 12.
10
Dual-Stiffness Force-Sensing Cannulation Tool for Retinal Microsurgery.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:3212-3216. doi: 10.1109/EMBC.2019.8857739.

本文引用的文献

1
Safe Tissue Manipulation in Retinal Microsurgery via Motorized Instruments with Force Sensing.
Proc IEEE Sens. 2017 Oct-Nov;2017. doi: 10.1109/ICSENS.2017.8234070. Epub 2017 Dec 25.
2
A Multi-Function Force Sensing Instrument for Variable Admittance Robot Control in Retinal Microsurgery.
IEEE Int Conf Robot Autom. 2014 May;2014:1411-1418. doi: 10.1109/ICRA.2014.6907037.
3
A submillimetric 3-DOF force sensing instrument with integrated fiber Bragg grating for retinal microsurgery.
IEEE Trans Biomed Eng. 2014 Feb;61(2):522-34. doi: 10.1109/TBME.2013.2283501.
4
Auditory force feedback substitution improves surgical precision during simulated ophthalmic surgery.
Invest Ophthalmol Vis Sci. 2013 Feb 15;54(2):1316-24. doi: 10.1167/iovs.12-11136.
5
New Steady-Hand Eye Robot with Micro-Force Sensing for Vitreoretinal Surgery.
Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2010 Sep 1;2010(26-29):814-819. doi: 10.1109/BIOROB.2010.5625991.
6
Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery.
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):108-15. doi: 10.1007/978-3-642-04268-3_14.
7
A sub-millimetric, 0.25 mN resolution fully integrated fiber-optic force-sensing tool for retinal microsurgery.
Int J Comput Assist Radiol Surg. 2009 Jun;4(4):383-90. doi: 10.1007/s11548-009-0301-6. Epub 2009 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验