Suppr超能文献

通过具有力感测功能的电动器械在视网膜显微手术中进行安全的组织操作。

Safe Tissue Manipulation in Retinal Microsurgery via Motorized Instruments with Force Sensing.

作者信息

Gonenc Berk, Gehlbach Peter, Taylor Russell H, Iordachita Iulian

机构信息

Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD, USA.

Wilmer Eye Institute, The Johns Hopkins School of Medicine, Baltimore, MD, USA.

出版信息

Proc IEEE Sens. 2017 Oct-Nov;2017. doi: 10.1109/ICSENS.2017.8234070. Epub 2017 Dec 25.

Abstract

Retinal microsurgery involves careful manipulation of delicate tissues by applying very small amount of forces most of which lie below the tactile sensory threshold of the surgeons. Membrane peeling is a common task in this domain, where application of excessive peeling forces can easily lead to serious complications, hence needs to be avoided. To quantify tool-tissue interaction forces during retinal microsurgery, various force-sensing tools were developed based on fiber Bragg grating sensors, yet the most beneficial way of using the acquired force information is currently unknown. In this study, using a motorized force-sensing micro-forceps tool, we develop an assistive method that enhances safety during membrane peeling by automatically opening the forceps and releasing the tissue based on the detected peeling forces. Through peeling experiments using bandages, we demonstrate that our method can effectively maintain the peeling force at a safe level even in case of non-homogeneous adhesion properties of the membrane.

摘要

视网膜显微手术需要通过施加非常小的力来小心操作 delicate tissues,其中大部分力低于外科医生的触觉感知阈值。膜剥离是该领域的常见任务,在此过程中,施加过大的剥离力很容易导致严重并发症,因此需要避免。为了量化视网膜显微手术期间的工具-组织相互作用力,基于光纤布拉格光栅传感器开发了各种力传感工具,但目前尚不清楚使用所获取力信息的最有益方式。在本研究中,我们使用电动力传感微型镊子工具,开发了一种辅助方法,通过基于检测到的剥离力自动打开镊子并释放组织,来提高膜剥离过程中的安全性。通过使用绷带进行剥离实验,我们证明即使在膜的粘附特性不均匀的情况下,我们的方法也能有效地将剥离力维持在安全水平。

相似文献

1
Safe Tissue Manipulation in Retinal Microsurgery via Motorized Instruments with Force Sensing.
Proc IEEE Sens. 2017 Oct-Nov;2017. doi: 10.1109/ICSENS.2017.8234070. Epub 2017 Dec 25.
2
3-DOF Force-Sensing Micro-Forceps for Robot-Assisted Membrane Peeling: Intrinsic Actuation Force Modeling.
Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2016 Jun;2016:489-494. doi: 10.1109/BIOROB.2016.7523674. Epub 2016 Jul 28.
3
FBG-Based Transverse and Axial Force-Sensing Micro-Forceps for Retinal Microsurgery.
Proc IEEE Sens. 2016 Oct-Nov;2016. doi: 10.1109/ICSENS.2016.7808628. Epub 2017 Jan 9.
4
Motorized Force-Sensing Micro-Forceps with Tremor Cancelling and Controlled Micro-Vibrations for Easier Membrane Peeling.
Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2014 Aug;2014:244-251. doi: 10.1109/BIOROB.2014.6913784.
5
Evaluation of a Micro-Force Sensing Handheld Robot for Vitreoretinal Surgery.
Rep U S. 2012 Dec 20;2012:4125-4130. doi: 10.1109/IROS.2012.6385715.
6
Force sensing micro-forceps for robot assisted retinal surgery.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:1401-4. doi: 10.1109/EMBC.2012.6346201.
7
3-DOF Force-Sensing Motorized Micro-Forceps for Robot-Assisted Vitreoretinal Surgery.
IEEE Sens J. 2017 Jun 1;17(11):3526-3541. doi: 10.1109/JSEN.2017.2694965. Epub 2017 Apr 18.
8
Design of 3-DOF force sensing micro-forceps for robot assisted vitreoretinal surgery.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:5686-9. doi: 10.1109/EMBC.2013.6610841.
9
A sub-millimetric, 0.25 mN resolution fully integrated fiber-optic force-sensing tool for retinal microsurgery.
Int J Comput Assist Radiol Surg. 2009 Jun;4(4):383-90. doi: 10.1007/s11548-009-0301-6. Epub 2009 Apr 15.
10
Toward robotically assisted membrane peeling with 3-DOF distal force sensing in retinal microsurgery.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:6859-63. doi: 10.1109/EMBC.2014.6945204.

引用本文的文献

1
Towards Bimanual Robot-Assisted Retinal Surgery: Tool-to-Sclera Force Evaluation.
Proc IEEE Sens. 2018 Oct;2018. doi: 10.1109/ICSENS.2018.8589810. Epub 2018 Dec 27.
2
User Behavior Evaluation in Robot-Assisted Retinal Surgery.
ROMAN. 2018 Aug;2018:174-179. doi: 10.1109/ROMAN.2018.8525638. Epub 2018 Nov 8.
3
Evaluation of a Force-Sensing Handheld Robot for Assisted Retinal Vein Cannulation.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:1-5. doi: 10.1109/EMBC.2018.8513304.

本文引用的文献

1
3-DOF Force-Sensing Motorized Micro-Forceps for Robot-Assisted Vitreoretinal Surgery.
IEEE Sens J. 2017 Jun 1;17(11):3526-3541. doi: 10.1109/JSEN.2017.2694965. Epub 2017 Apr 18.
2
Motorized Force-Sensing Micro-Forceps with Tremor Cancelling and Controlled Micro-Vibrations for Easier Membrane Peeling.
Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2014 Aug;2014:244-251. doi: 10.1109/BIOROB.2014.6913784.
3
Micron: an Actively Stabilized Handheld Tool for Microsurgery.
IEEE Trans Robot. 2012 Feb 1;28(1):195-212. doi: 10.1109/TRO.2011.2169634. Epub 2011 Nov 18.
4
A force-sensing microsurgical instrument that detects forces below human tactile sensation.
Retina. 2013 Jan;33(1):200-6. doi: 10.1097/IAE.0b013e3182625d2b.
5
Applied force during vitreoretinal microsurgery with handheld instruments.
Conf Proc IEEE Eng Med Biol Soc. 2004;2004:2771-3. doi: 10.1109/IEMBS.2004.1403792.
6
Retinal microvascular surgery: a feasibility study.
Invest Ophthalmol Vis Sci. 2004 Jun;45(6):1963-8. doi: 10.1167/iovs.03-0874.
7
Sub-retinal hemorrhage during internal limiting membrane peeling for a macular hole.
Graefes Arch Clin Exp Ophthalmol. 2003 Jul;241(7):582-584. doi: 10.1007/s00417-003-0676-y. Epub 2003 May 9.
8
Distribution of iatrogenic retinal breaks in macular hole surgery.
Ophthalmology. 1995 Sep;102(9):1387-92. doi: 10.1016/s0161-6420(95)30859-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验