Pannek Simon, Dehghani Shervin, Sommersperger Michael, Zhang Peiyao, Gehlbach Peter, Nasseri M Ali, Iordachita Iulian, Navab Nassir
Department of Computer Science, Technische Universität München, München 85748 Germany.
Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD, USA.
IEEE Int Conf Robot Autom. 2024 May;2024:16999-17005. doi: 10.1109/icra57147.2024.10610807. Epub 2024 Aug 8.
Recent advancements in age-related macular degeneration treatments necessitate precision delivery into the subretinal space, emphasizing minimally invasive procedures targeting the retinal pigment epithelium (RPE)-Bruch's membrane complex without causing trauma. Even for skilled surgeons, the inherent hand tremors during manual surgery can jeopardize the safety of these critical interventions. This has fostered the evolution of robotic systems designed to prevent such tremors. These robots are enhanced by FBG sensors, which sense the small force interactions between the surgical instruments and retinal tissue. To enable the community to design algorithms taking advantage of such force feedback data, this paper focuses on the need to provide a specialized dataset, integrating optical coherence tomography (OCT) imaging together with the aforementioned force data. We introduce a unique dataset, integrating force sensing data synchronized with OCT B-scan images, derived from a sophisticated setup involving robotic assistance and OCT integrated microscopes. Furthermore, we present a neural network model for image-based force estimation to demonstrate the dataset's applicability.
年龄相关性黄斑变性治疗的最新进展要求精确地将药物递送至视网膜下间隙,强调采用微创方法靶向视网膜色素上皮(RPE)-布鲁赫膜复合体,同时避免造成创伤。即使对于技术娴熟的外科医生而言,手动手术过程中固有的手部震颤也可能危及这些关键干预措施的安全性。这推动了旨在预防此类震颤的机器人系统的发展。这些机器人通过光纤光栅(FBG)传感器得到增强,该传感器可感知手术器械与视网膜组织之间的微小力相互作用。为了使研究群体能够设计利用此类力反馈数据的算法,本文着重强调提供一个专门数据集的必要性,该数据集将光学相干断层扫描(OCT)成像与上述力数据整合在一起。我们引入了一个独特的数据集,该数据集整合了与OCT B扫描图像同步的力传感数据,这些数据源自一个涉及机器人辅助和OCT集成显微镜的精密装置。此外,我们提出了一种基于图像的力估计神经网络模型,以证明该数据集的适用性。