Rizkallah Mira, Su Xin, Maugey Thomas, Guillemot Christine
IEEE Trans Image Process. 2019 Jul 29. doi: 10.1109/TIP.2019.2928873.
The paper addresses the problem of energy compaction of dense 4D light fields by designing geometry-aware local graph-based transforms. Local graphs are constructed on super-rays that can be seen as a grouping of spatially and geometry-dependent angularly correlated pixels. Both non separable and separable transforms are considered. Despite the local support of limited size defined by the super-rays, the Laplacian matrix of the non separable graph remains of high dimension and its diagonalization to compute the transform eigen vectors remains computationally expensive. To solve this problem, we then perform the local spatio-angular transform in a separable manner. We show that when the shape of corresponding super-pixels in the different views is not isometric, the basis functions of the spatial transforms are not coherent, resulting in decreased correlation between spatial transform coefficients. We hence propose a novel transform optimization method that aims at preserving angular correlation even when the shapes of the super-pixels are not isometric. Experimental results show the benefit of the approach in terms of energy compaction. A coding scheme is also described to assess the rate-distortion perfomances of the proposed transforms and is compared to state of the art encoders namely HEVC-lozenge [1], JPEG pleno 1.1 [2], HEVC-pseudo [3] and HLRA [4].
本文通过设计基于几何感知局部图的变换,解决了密集4D光场的能量压缩问题。局部图是在超射线的基础上构建的,超射线可视为空间上和几何相关的角度相关像素的分组。文中考虑了不可分离变换和可分离变换。尽管由超射线定义的局部支持大小有限,但不可分离图的拉普拉斯矩阵仍然是高维的,对其进行对角化以计算变换特征向量的计算成本仍然很高。为了解决这个问题,我们随后以可分离的方式执行局部时空角变换。我们表明,当不同视图中相应超像素的形状不是等距时,空间变换的基函数是不相干的,这会导致空间变换系数之间的相关性降低。因此,我们提出了一种新颖的变换优化方法,旨在即使在超像素形状不是等距的情况下也能保持角度相关性。实验结果表明了该方法在能量压缩方面的优势。还描述了一种编码方案,用于评估所提出变换的率失真性能,并与现有编码器HEVC-菱形[1]、JPEG全光1.1[2]、HEVC-伪[3]和HLRA[4]进行比较。