Suppr超能文献

自然成像的卷积去模糊。

Convolutional Deblurring for Natural Imaging.

出版信息

IEEE Trans Image Process. 2020;29:250-264. doi: 10.1109/TIP.2019.2929865. Epub 2019 Jul 31.

Abstract

In this paper, we propose a novel design of image deblurring in the form of one-shot convolution filtering that can directly convolve with naturally blurred images for restoration. The problem of optical blurring is a common disadvantage to many imaging applications that suffer from optical imperfections. Despite numerous deconvolution methods that blindly estimate blurring in either inclusive or exclusive forms, they are practically challenging due to high computational cost and low image reconstruction quality. Both conditions of high accuracy and high speed are prerequisites for high-throughput imaging platforms in digital archiving. In such platforms, deblurring is required after image acquisition before being stored, previewed, or processed for high-level interpretation. Therefore, on-the-fly correction of such images is important to avoid possible time delays, mitigate computational expenses, and increase image perception quality. We bridge this gap by synthesizing a deconvolution kernel as a linear combination of finite impulse response (FIR) even-derivative filters that can be directly convolved with blurry input images to boost the frequency fall-off of the point spread function (PSF) associated with the optical blur. We employ a Gaussian low-pass filter to decouple the image denoising problem for image edge deblurring. Furthermore, we propose a blind approach to estimate the PSF statistics for two Gaussian and Laplacian models that are common in many imaging pipelines. Thorough experiments are designed to test and validate the efficiency of the proposed method using 2054 naturally blurred images across six imaging applications and seven state-of-the-art deconvolution methods.

摘要

在本文中,我们提出了一种新颖的图像去模糊设计,采用单次卷积滤波的形式,可以直接对自然模糊的图像进行卷积恢复。光学模糊问题是许多成像应用的常见缺点,这些应用都受到光学不完善的影响。尽管有许多去卷积方法盲目地以包含或排除的形式估计模糊,但由于计算成本高和图像重建质量低,它们在实践中具有挑战性。高精度和高速这两个条件都是数字归档中的高通量成像平台的前提条件。在这种平台中,在存储、预览或进行高级解释之前,需要在图像采集后对其进行去模糊处理。因此,对这些图像进行实时校正对于避免可能的延迟、减轻计算成本和提高图像感知质量非常重要。我们通过合成一个去卷积核来弥合这一差距,该核是有限脉冲响应 (FIR) 偶导数滤波器的线性组合,可以直接与模糊输入图像卷积,以增强与光学模糊相关的点扩散函数 (PSF) 的频率下降。我们采用高斯低通滤波器来解耦图像去噪问题,以实现图像边缘去模糊。此外,我们提出了一种盲方法来估计两种常见于许多成像管道的高斯和拉普拉斯模型的 PSF 统计信息。我们设计了彻底的实验来测试和验证所提出方法的效率,使用了六个成像应用程序和七个最先进的去卷积方法的 2054 张自然模糊图像。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验