Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, 138602, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, 636921, Singapore.
Singapore Centre for Environmental Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore; College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
J Mol Biol. 2019 Sep 6;431(19):3690-3705. doi: 10.1016/j.jmb.2019.07.033. Epub 2019 Aug 2.
In response to the stress of infection, Mycobacterium tuberculosis (Mtb) reprograms its metabolism to accommodate nutrient and energetic demands in a changing environment. Pyruvate kinase (PYK) is an essential glycolytic enzyme in the phosphoenolpyruvate-pyruvate-oxaloacetate node that is a central switch point for carbon flux distribution. Here we show that the competitive binding of pentose monophosphate inhibitors or the activator glucose 6-phosphate (G6P) to MtbPYK tightly regulates the metabolic flux. Intriguingly, pentose monophosphates were found to share the same binding site with G6P. The determination of a crystal structure of MtbPYK with bound ribose 5-phosphate (R5P), combined with biochemical analyses and molecular dynamic simulations, revealed that the allosteric inhibitor pentose monophosphate increases PYK structural dynamics, weakens the structural network communication, and impairs substrate binding. G6P, on the other hand, primes and activates the tetramer by decreasing protein flexibility and strengthening allosteric coupling. Therefore, we propose that MtbPYK uses these differences in conformational dynamics to up- and down-regulate enzymic activity. Importantly, metabolome profiling in mycobacteria reveals a significant increase in the levels of pentose monophosphate during hypoxia, which provides insights into how PYK uses dynamics of the tetramer as a competitive allosteric mechanism to retard glycolysis and facilitate metabolic reprogramming toward the pentose-phosphate pathway for achieving redox balance and an anticipatory metabolic response in Mtb.
为应对感染压力,结核分枝杆菌(Mycobacterium tuberculosis,Mtb)会重新规划其代谢,以适应不断变化的环境中的营养和能量需求。丙酮酸激酶(Pyruvate kinase,PYK)是磷酸烯醇丙酮酸-丙酮酸-草酰乙酸节点中的一种必需糖酵解酶,是碳流量分布的中央开关点。在这里,我们发现五碳糖单磷酸抑制剂或激活剂葡萄糖 6-磷酸(Glucose 6-phosphate,G6P)的竞争结合可紧密调节 MtbPYK 的代谢通量。有趣的是,五碳糖单磷酸被发现与 G6P 共享相同的结合位点。与结合的核糖 5-磷酸(Ribose 5-phosphate,R5P)的 MtbPYK 晶体结构的测定,结合生化分析和分子动力学模拟,揭示了别构抑制剂五碳糖单磷酸增加 PYK 结构动力学,削弱结构网络通信,并损害底物结合。另一方面,G6P 通过降低蛋白质灵活性和增强变构偶联来使四聚体预激活和激活。因此,我们提出 MtbPYK 利用这些构象动力学差异来上调和下调酶活性。重要的是,分枝杆菌的代谢组学分析显示,在缺氧期间,五碳糖单磷酸的水平显著增加,这为了解 PYK 如何利用四聚体的动力学作为一种竞争性变构机制来减缓糖酵解,并促进磷酸戊糖途径的代谢重编程,从而在 Mtb 中实现氧化还原平衡和预期的代谢反应提供了线索。