Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, 138602, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, 636921, Singapore.
Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore.
Biochem Biophys Res Commun. 2020 Nov 12;532(3):370-376. doi: 10.1016/j.bbrc.2020.08.048. Epub 2020 Aug 30.
During its intra-erythrocytic growth phase, the malaria parasite Plasmodium falciparum relies heavily on glycolysis for its energy requirements. Pyruvate kinase (PYK) is essential for regulating glycolytic flux and for ATP production, yet the allosteric mechanism of P. falciparum PYK (PfPYK) remains poorly understood. Here we report the first crystal structure of PfPYK in complex with substrate analogues oxalate and the ATP product. Comparisons of PfPYK structures in the active R-state and inactive T-state reveal a 'rock-and-lock' allosteric mechanism regulated by rigid-body rotations of each subunit in the tetramer. Kinetic data and structural analysis indicate glucose 6-phosphate is an activator by increasing the apparent maximal velocity of the enzyme. Intriguingly, the trypanosome drug suramin inhibits PfPYK, which points to glycolysis as a set of potential therapeutic targets against malaria.
在其红细胞内生长阶段,疟原虫恶性疟原虫严重依赖糖酵解来满足其能量需求。丙酮酸激酶(PYK)对于调节糖酵解通量和产生 ATP 至关重要,但恶性疟原虫 PYK(PfPYK)的别构机制仍知之甚少。在这里,我们报告了 PfPYK 与底物类似物草酸盐和 ATP 产物复合物的首个晶体结构。PfPYK 在活性 R 态和非活性 T 态的结构比较揭示了一种“摇滚锁定”的别构机制,由四聚体中每个亚基的刚体旋转来调节。动力学数据和结构分析表明葡萄糖 6-磷酸通过增加酶的表观最大速度成为一种激活剂。有趣的是,锥虫药物苏拉明抑制 PfPYK,这表明糖酵解是一组针对疟疾的潜在治疗靶点。