Suppr超能文献

丙酮酸激酶 M2 在体内慢性低氧条件下调节小鼠心脏糖酵解通量中的潜在作用。

Potential role for pyruvate kinase M2 in the regulation of murine cardiac glycolytic flux during in vivo chronic hypoxia.

机构信息

School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, U.K.

MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, U.K.

出版信息

Biosci Rep. 2021 Jun 25;41(6). doi: 10.1042/BSR20203170.

Abstract

Carbohydrate metabolism in heart failure shares similarities to that following hypoxic exposure, and is thought to maintain energy homoeostasis in the face of reduced O2 availability. As part of these in vivo adaptations during sustained hypoxia, the heart up-regulates and maintains a high glycolytic flux, but the underlying mechanism is still elusive. We followed the cardiac glycolytic responses to a chronic hypoxic (CH) intervention using [5-3H]-glucose labelling in combination with detailed and extensive enzymatic and metabolomic approaches to provide evidence of the underlying mechanism that allows heart survivability. Following 3 weeks of in vivo hypoxia (11% oxygen), murine hearts were isolated and perfused in a retrograde mode with function measured via an intraventricular balloon and glycolytic flux quantified using [5-3H]-glucose labelling. At the end of perfusion, hearts were flash-frozen and central carbon intermediates determined via liquid chromatography tandem mass spectrometry (LC-MS/MS). The maximal activity of glycolytic enzymes considered rate-limiting was assessed enzymatically, and protein abundance was determined using Western blotting. Relative to normoxic hearts, CH increased ex vivo cardiac glycolytic flux 1.7-fold with no effect on cardiac function. CH up-regulated cardiac pyruvate kinase (PK) flux 3.1-fold and cardiac pyruvate kinase muscle isoenzyme M2 (PKM2) protein content 1.4-fold compared with normoxic hearts. CH also augmented cardiac pentose phosphate pathway (PPP) flux, reflected by higher ribose-5-phosphate (R5P) content. These findings support an increase in the covalent (protein expression) and allosteric (flux) control of PKM2 as being central to the sustained up-regulation of the glycolytic flux in the chronically hypoxic heart.

摘要

心力衰竭中的碳水化合物代谢与缺氧暴露后的代谢相似,被认为是在 O2 供应减少的情况下维持能量平衡的一种方式。在持续缺氧的情况下,作为体内适应的一部分,心脏上调并维持高糖酵解通量,但潜在的机制仍不清楚。我们使用[5-3H]-葡萄糖标记结合详细广泛的酶和代谢组学方法,研究了心脏对慢性缺氧(CH)干预的糖酵解反应,为允许心脏存活的潜在机制提供了证据。在体内缺氧(11%氧气)3 周后,将鼠心分离并以逆行模式灌注,通过心室内球囊测量功能,并使用[5-3H]-葡萄糖标记定量糖酵解通量。在灌注结束时,将心脏快速冷冻并通过液相色谱串联质谱(LC-MS/MS)测定中心碳中间体。通过酶法评估被认为是限速的糖酵解酶的最大活性,并使用 Western blot 测定蛋白质丰度。与正常氧合心脏相比,CH 使离体心脏糖酵解通量增加了 1.7 倍,而对心脏功能没有影响。CH 使心脏丙酮酸激酶(PK)通量增加了 3.1 倍,心脏丙酮酸激酶肌肉同工酶 M2(PKM2)蛋白含量增加了 1.4 倍,与正常氧合心脏相比。CH 还增加了心脏戊糖磷酸途径(PPP)通量,反映在核糖-5-磷酸(R5P)含量更高。这些发现支持 PKM2 的共价(蛋白表达)和变构(通量)控制的增加是慢性缺氧心脏中糖酵解通量持续上调的核心。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/401f/8173528/cf0e62f73b6c/bsr-41-bsr20203170-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验