EEGSourceSim:一个使用基于 MRI 的正向模型和具有生物合理性的信号和噪声对 EEG 头皮数据进行逼真模拟的框架。
EEGSourceSim: A framework for realistic simulation of EEG scalp data using MRI-based forward models and biologically plausible signals and noise.
机构信息
Department of Psychology, Jordan Hall, Building 420, Stanford University, Stanford, CA 94305, USA.
Department of Video Coding & Analytics, Fraunhofer Heinrich Hertz Institute, 10587 Berlin, Germany.
出版信息
J Neurosci Methods. 2019 Dec 1;328:108377. doi: 10.1016/j.jneumeth.2019.108377. Epub 2019 Aug 2.
BACKGROUND
Electroencephalography (EEG) is widely used to investigate human brain function. Simulation studies are essential for assessing the validity of EEG analysis methods and the interpretability of results.
NEW METHOD
Here we present a simulation environment for generating EEG data by embedding biologically plausible signal and noise into MRI-based forward models that incorporate individual-subject variability in structure and function.
RESULTS
The package includes pipelines for the evaluation and validation of EEG analysis tools for source estimation, functional connectivity, and spatial filtering. EEG dynamics can be simulated using realistic noise and signal models with user specifiable signal-to-noise ratio (SNR). We also provide a set of quantitative metrics tailored to source estimation, connectivity and spatial filtering applications.
COMPARISON WITH EXISTING METHOD(S): We provide a larger set of forward solutions for individual MRI-based head models than has been available previously. These head models are surface-based and include two sets of regions-of-interest (ROIs) that have been brought into registration with the brain of each individual using surface-based alignment - one from a whole brain and the other from a visual cortex atlas. We derive a realistic model of noise by fitting different model components to measured resting state EEG. We also provide a set of quantitative metrics for evaluating source-localization, functional connectivity and spatial filtering methods.
CONCLUSIONS
The inclusion of a larger number of individual head-models, combined with surface-atlas based labeling of ROIs and plausible models of signal and noise, allows for simulation of EEG data with greater realism than previous packages.
背景
脑电图(EEG)广泛用于研究人类大脑功能。模拟研究对于评估 EEG 分析方法的有效性和结果的可解释性至关重要。
新方法
本文提出了一种通过将生物上合理的信号和噪声嵌入基于 MRI 的正向模型来生成 EEG 数据的模拟环境,该模型纳入了结构和功能的个体差异。
结果
该软件包包括用于评估和验证源估计、功能连接和空间滤波的 EEG 分析工具的管道。可以使用用户指定的信噪比(SNR)的现实噪声和信号模型模拟 EEG 动力学。我们还提供了一套针对源估计、连接和空间滤波应用量身定制的定量指标。
与现有方法的比较
我们提供了比以前更多的基于个体 MRI 的头模型的正向解决方案。这些头模型基于表面,包括两组感兴趣区域(ROI),它们使用基于表面的配准与每个人的大脑进行了配准——一组来自整个大脑,另一组来自视觉皮层图谱。我们通过将不同的模型组件拟合到测量的静息状态 EEG 中,得出了一个现实的噪声模型。我们还提供了一组定量指标,用于评估源定位、功能连接和空间滤波方法。
结论
包含更多个体头模型,再加上基于表面的 ROI 标记和合理的信号和噪声模型,使得 EEG 数据的模拟比以前的软件包更具现实性。