Cohen Michael X
Radboud University and Radboud University Medical Center, Donders Institute for Neuroscience, Netherlands.
J Neurosci Methods. 2017 Feb 15;278:1-12. doi: 10.1016/j.jneumeth.2016.12.016. Epub 2016 Dec 27.
Large-scale synchronous neural activity produces electrical fields that can be measured by electrodes outside the head, and volume conduction ensures that neural sources can be measured by many electrodes. However, most data analyses in M/EEG research are univariate, meaning each electrode is considered as a separate measurement. Several multivariate linear spatial filtering techniques have been introduced to the cognitive electrophysiology literature, but these techniques are not commonly used; comparisons across filters would be beneficial to the field.
The purpose of this paper is to evaluate and compare the performance of several linear spatial filtering techniques, with a focus on those that use generalized eigendecomposition to facilitate dimensionality reduction and signal-to-noise ratio maximization.
Simulated and empirical data were used to assess the accuracy, signal-to-noise ratio, and interpretability of the spatial filter results. When the simulated signal is powerful, different spatial filters provide convergent results. However, more subtle signals require carefully selected analysis parameters to obtain optimal results.
Linear spatial filters can be powerful data analysis tools in cognitive electrophysiology, and should be applied more often; on the other hand, spatial filters can latch onto artifacts or produce uninterpretable results.
Hypothesis-driven analyses, careful data inspection, and appropriate parameter selection are necessary to obtain high-quality results when using spatial filters.
大规模同步神经活动产生的电场可被头部外部的电极测量,而容积传导确保了神经源可被多个电极测量。然而,脑磁图/脑电图(M/EEG)研究中的大多数数据分析都是单变量的,即每个电极被视为一个单独的测量值。认知电生理学文献中已经引入了几种多元线性空间滤波技术,但这些技术并不常用;对不同滤波器进行比较将对该领域有益。
本文的目的是评估和比较几种线性空间滤波技术的性能,重点关注那些使用广义特征分解来促进降维和最大化信噪比的技术。
使用模拟数据和实证数据来评估空间滤波结果的准确性、信噪比和可解释性。当模拟信号较强时,不同的空间滤波器会给出趋同的结果。然而,对于更微弱的信号,则需要仔细选择分析参数以获得最佳结果。
线性空间滤波器在认知电生理学中可以成为强大的数据分析工具,应该更频繁地应用;另一方面,空间滤波器可能会捕捉到伪迹或产生无法解释的结果。
使用空间滤波器时,假设驱动的分析、仔细的数据检查和适当的参数选择对于获得高质量结果是必要的。